Evaluation of phytohormones and hydrogen peroxide in the corn crop (Zea mays L.)

PDF downloads: 805

Authors

  • Luis Felipe Juárez-Santillán Univerisdad Tecnológica de Gutiérrez Zamora, Área académica de Agrobiotecnología, Campus Gutiérrez Zamora, Carretera Gutiérrez Zamora-Boca de Lima Km 2.5 Gutiérrez Zamora, Veracruz, México
  • Saúl Bonilla-Cruz Univerisdad Tecnológica de Gutiérrez Zamora, Área académica de Agrobiotecnología, Campus Gutiérrez Zamora, Carretera Gutiérrez Zamora-Boca de Lima Km 2.5 Gutiérrez Zamora, Veracruz, México
  • Juan Pablo Reyes-Gómez Univerisdad Tecnológica de Gutiérrez Zamora, Área académica de Agrobiotecnología, Campus Gutiérrez Zamora, Carretera Gutiérrez Zamora-Boca de Lima Km 2.5 Gutiérrez Zamora, Veracruz, México
  • Georgina Martínez-Reséndiz Univerisdad Tecnológica de Gutiérrez Zamora, Área académica de Agrobiotecnología, Campus Gutiérrez Zamora, Carretera Gutiérrez Zamora-Boca de Lima Km 2.5 Gutiérrez Zamora, Veracruz, México
  • Jocabel Extocapan-Molina Univerisdad Tecnológica de Gutiérrez Zamora, Área académica de Agrobiotecnología, Campus Gutiérrez Zamora, Carretera Gutiérrez Zamora-Boca de Lima Km 2.5 Gutiérrez Zamora, Veracruz, México
  • Julio Alfonso Armenta-Barrios Univerisdad Tecnológica de Gutiérrez Zamora, Área académica de Agrobiotecnología, Campus Gutiérrez Zamora, Carretera Gutiérrez Zamora-Boca de Lima Km 2.5 Gutiérrez Zamora, Veracruz, México

DOI:

https://doi.org/10.56845/rebs.v3i2.60

Keywords:

phytohormones, growth promoters, hydrogen peroxide

Abstract

The use of environmentally friendly growth promoters and chemical agents in agricultural production is an important and favorable challenge, since it would reduce the use of agrochemicals and therefore less pollution for the field. The main objectives of this study were to make treatments on corn crops with auxins, gibberellins and hydrogen peroxide; as well as determining what the main positive or negative effects are. A factorial experiment design was carried out with five experiments which were: 1) auxins, 2) gibberellins, 3) Hydrogen peroxide (H2O2), 4) auxins-gibberellins and 5) control; the crop was corn, soil and plant samplings were made every 20 days, the variables analyzed in the plant were stem diameter, stem size, number of leaves and root size; the soil was analyzed for nitrites, nitrates, pH, EC and Eh; a statistical analysis was performed with these (ANOVA and Tukey's test). The five experiments were carried out and according to the results obtained, it can be said that the best treatments are those in which H2O2 and auxins were used, since these were in which the crop presented the highest values ​​of the variables analyzed in the plant. These results suggest that in subsequent studies experiments using phytohormones and H2O2 together.

References

Aditya Banerjee, A. and Aryadeep, R. (2020). Gibberellic Acid-Priming Promotes Fluoride Tolerance in a Susceptible Indica Rice Cultivar by Regulating the Antioxidant and Phytohormone Homeostasis. Journal of Plant Growth Regulation, https://doi.org/10.1007/s00344-020- 10110-7.

Borjas-Ventura, R., Julca-Otiniano, A., Alvarado-Huamán, L. (2020). Las fitohormonas una pieza clave en el desarrollo de la agricultura The plant hormones, an important component of the agriculture development. J. Selva Andina Biosph, 8(2),150-164.

Cerný, M., Kuklová, A., Hoehenwarter, W., Fragner, L., Novák, O., Rotková, G., Jedelský, P. L., Žáková, K., Šmehilová, M. and Strnad, M. (2013). Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J. Exp. Bot., 64, 4193–4206.

Gadzinowska, J., Dziurkaa, M., Ostrowskaa, A., Hura, K. and Hura, T. (2020). Phytohormone synthesis pathways in sweet briar rose (Rosarubiginosa L.) seedlings with high adaptation potential to soil drought. Plant Phy and Biochem, https://doi.org/10.1016/j.plaphy.2020.06.018.

George, E. F., Hall, M. A. and De Klerk, G. J. (2008). Plant growth regulators I: Introduction; auxins, their analogues and inhibitors. In Plant Propagation by Tissue Culture; Springer: Dordrecht, The Netherlands, pp. 175-204.

Ibrahim, M. V., Mudher, A. W., Timmen, A. and Hussain, J. A. (2019). The effect of sulicon, tillage and the interaction between them on some antioxidants and phytihormones during drought stress of maize (Zea mays L.) plants. Plant Archives, 19(1), 67-74.

Jiang, K. and Tadao, A., (2018). Chemical regulators of plant hormones and their applications in basic research and agricultura. Bioscience Biotechnology and Biochemistry, 82(8), 1265-1300.

Keswani, Ch., Singh, P. S., Cueto, L., García-Estrada, C., Mezaache-Aichour, S., Glare, R. T., Borriss, R., Surya Pratap Singh, P. S., Miguel Angel Blázquez, M. A. and Estibaliz Sansinenea, E. (2020). Auxins of microbial origin and their use in agricultura. Appl Microbiol Biotechnol, https://doi.org/10.1007/s00253-020-10890-8.

Kun, T. P. (2011). The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol, 21: 338-345.

Lee, H. Z., Hirakawa, T., Yamaguchi, N. and Ito, T. (2019). The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. Int. J. Mol. Sci., 20, 4065; doi:10.3390/ijms20164065.

Liu, W. C. and Carnsdagger, H. R. (1961). Isolation of abscisin, an abscission accelerating substance. Science, 134, 384-385.

Magaña-Dueñas, V., López-Bucio, J. y Beltrán-Peña, E. (2015). El transporte de auxinas y su impacto en el desarrollo vegetal. Ciencia Nicolaita, 64, 22-41.

Martin Cˇ erný, M., Habánová, H., Berka, M., Luklová, M and Brzobohatý, B., (2018). Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int. J. Mol. Sci., 19, 2812.

Mok, D. W. and Mok, M. C. (2001). Cytokinin metabolism and action. Annu. Rev. Plant Biol., 52, 89-118.

Müller, M. and Munné-Bosch, S. (2021). Hormonal impact on photosynthesis and photoprotection in plants. Plant physiology. 185, 1500-1522. Park, S. Y., Fung, P. and Nishimura, N. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 324, 1068-1071.

Romanenko, K. O., Kosakovskaya, I. V. and Romanenko, P.O. (2016). Phytohormones of Microalgae: Biological Role and Involvement in the Regulation of Physiological Processes. Pt II. Cytokinins and Gibberellins. Int. J. Algae, 18, 179-201.

Sá, F. V. da S., Brito, B. M. E., Silva, L. de A., Moreira, L. R. C., de Paiva, E. P. and Souto, S. L. (2020). Exogenous application of phytohormones mitigates the effect of salt stress on Carica papaya plants. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(3), 170-175. Wang, K. L. C., Li, H. and Ecker, J. R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell, 14 (Suppl. 1), 131-151.

Xiao, Z., Fu, R., Li, J., Fan, Z. and Yin, H. (2016). Overexpression of the gibberellin 2-Oxidase gene from Camellia lipoensis induces dwarfism and smaller flowers in Nicotiana tabacum. Plant Mol Biol Rep, 34, 182-191.

Downloads

Published

2021-11-15

How to Cite

Juárez-Santillán, L. F., Bonilla-Cruz, S., Reyes-Gómez, J. P., Martínez-Reséndiz, G., Extocapan-Molina, J., & Armenta-Barrios, J. A. (2021). Evaluation of phytohormones and hydrogen peroxide in the corn crop (Zea mays L.). Renewable Energy, Biomass & Sustainability, 3(2), 109–115. https://doi.org/10.56845/rebs.v3i2.60

Issue

Section

Original Articles