Sugarcane molasses-based biorefinery: Organic acids and ethanol production

DOI:
https://doi.org/10.56845/rebs.v5i1.78Keywords:
Sugarcane molasses, Biorefinery, ethanol, lactic acid, succinic acidAbstract
Sugarcane molasses are the largest produced waste in sugar mills; in the last harvesting cycle 2,178,131 tons were obtained and only 2.46% were used for transformation processes. Molasses has great potential to be the main feedstock in a biorefinery concept. Its composition rich in fermentable sugars and its availability are interesting features considered in this study. Through the Aspen Plus © software a multi-product biorefinery scenario was design and analyzed, technically and economically. The three main products considered were ethanol, lactic acid and succinic acid. The overall process consists of an initial stage of hydrolysis or inversion of the sucrose present in the molasses to reducing sugars followed by a specific dilution for fermentation of each of the products considered, as well as subsequent separation and purification operations. Plant efficiencies conversions were 3.24 kg of molasses/L of ethanol, 3.08 kg of molasses/kg of lactic acid and 9.25 kg of molasses/kg of succinic acid. The economic assessment was positive for organic acids production. Ethanol production had a slightly worst economic performance compared to the other processes, but the proposed scenario managed to obtain a profitability index of 1.02. The expense recovery ratio of the whole biorefinery was 1.35 which means a surplus of 35% after the project investment has paid for itself. The biorefinery’s robustness in the economic aspect comes from organic acids production; meanwhile, the social and environmental impacts are from ethanol production.References
Aguilar-Rivera, N., Rodríguez L, D. A., Enríquez R, V., Castillo M, A., & Herrera S, A. (2012). The Mexican sugarcane industry: Overview, constraints, current status and long-term trends. Sugar Tech, 14, 207-222. https://doi.org/10.1007/s12355-012-0151-3
Rivera, N. A., Rodríguez, D. A., Morán, A. C., & Solano, A. H. (2012). Sucroquímica, alternativa de diversificación de la agroindustria de la caña de azúcar. Multiciencias, 12(1), 7-15. https://www.redalyc.org/articulo.oa?id=90423275002
ALIBABA (2017) ALIBABA. 2014 International Prices. www.alibaba.com. Accessed 20 Jun 2017
Arni, S., Molinari, F., Del Borghi, M., & Converti, A. (1999). Improvement of alcohol fermentation of a corn starch hydrolysate by viscosity‐raising additives. Starch‐Stärke, 51(6), 218-224. https://doi.org/10.1002/(SICI)1521-379X(199906)51:6<218::AID-STAR218>3.0.CO;2-7.
Borodina, I., & Nielsen, J. (2014). Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnology journal, 9(5), 609-620. https://doi.org/10.1002/biot.201300445
Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green chemistry, 12(4), 539-554. https://doi.org/10.1039/b922014c
Brandam, C., Castro-Martínez, C., Delia, M. L., Ramon-Portugal, F., & Strehaiano, P. (2008). Effect of temperature on Brettanomyces bruxellensis: metabolic and kinetic aspects. Canadian journal of microbiology, 54(1), 11-18. https://doi.org/10.1139/W07-126
Cardona, C. A., Sanchez, O. J., & Gutierrez, L. F. (2009). Process synthesis for fuel ethanol production. Crc Press.
Castañeda-Ayarza, J. A., & Cortez, L. A. B. (2017). Final and B molasses for fuel ethanol production and some market implications. Renewable and Sustainable Energy Reviews, 70, 1059-1065. https://doi.org/10.1016/j.rser.2016.12.010
Chan, S., Kanchanatawee, S., & Jantama, K. (2012). Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli. Bioresource technology, 103(1), 329-336. https://doi.org/10.1016/j.biortech.2011.09.096
CONADESUCA Database, (2017). Comite Nacional para el Desarrollo Sustentable de la Caña de Azucar. www.siiba.conadesuca.gob.mx/informa/. Accessed 15 Dec 2017
Corona-González, R. I., Bories, A., González-Álvarez, V., & Pelayo-Ortiz, C. (2008). Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130. Process Biochemistry, 43(10), 1047-1053. https://doi.org/10.1016/j.procbio.2008.05.011
de Jong, E., & Jungmeier, G. (2015). Biorefinery concepts in comparison to petrochemical refineries. In Industrial biorefineries & white biotechnology (pp. 3-33). Elsevier. https://doi.org/10.1016/B978-0-444-63453-5.00001-X
FAOSTAT Database, (2021). Food and Agriculture Organization of the United Nations. In: FAOSTAT. http://www.fao.org/faostat/en/. Accessed 09 January 2021
Fernández-López, C. L., Torrestiana-Sánchez, B., Salgado-Cervantes, M. A., García, P. M., & Aguilar-Uscanga, M. G. (2012). Use of sugarcane molasses “B” as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations. Bioprocess and Biosystems Engineering, 35, 605-614. https://doi.org/10.1007/s00449-011-0633-9
Gao, R., Xiong, L., Wang, M., Peng, F., Zhang, H., & Chen, X. (2022). Production of acetone-butanol-ethanol and lipids from sugarcane molasses via coupled fermentation by Clostridium acetobutylicum and oleaginous yeasts. Industrial Crops and Products, 185, 115131. https://doi.org/10.1016/j.indcrop.2022.115131
Gomes, G. R., Rampon, D. S., & Ramos, L. P. (2017). Production of 5-(hydroxymethyl)-furfural from water-soluble carbohydrates and sugarcane molasses. Applied Catalysis A: General, 545, 127-133. https://doi.org/10.1016/j.apcata.2017.07.049
Hujanen, M. L. Y. Y., & Linko, Y. Y. (1996). Effect of temperature and various nitrogen sources on L (+)-lactic acid production by Lactobacillus casei. Applied microbiology and biotechnology, 45, 307-313. https://doi.org/10.1007/s002530050688
ICIS (2017). ICIS Chemical Pricing. Price reports for chemicals. https://www.icis.com/. Accessed 20 Jun 2017.
Jacques, K. A., Lyons, T. P., & Kelsall, D. R. (2003). The alcohol textbook: a reference for the beverage, fuel and industrial alcohol industries. Nottingham University Press.
Kingsly, J. S., Chathalingath, N., Parthiban, S. A., Sivakumar, D., Sabtharishi, S., Senniyappan, V., Duraisamy, V.S., Jasmine, A., & Gunasekar, A. (2022). Utilization of sugarcane molasses as the main carbon source for the production of polyhydroxyalkanoates from Enterobacter cloacae. Energy Nexus, 6, 100071. https://doi.org/10.1016/j.nexus.2022.100071
Kumar, V., Kothari, R., Pathak, V. V., & Tyagi, S. K. (2018). Optimization of substrate concentration for sustainable biohydrogen production and kinetics from sugarcane molasses: experimental and economical assessment. Waste and Biomass Valorization, 9, 273-281. https://doi.org/10.1007/s12649-016-9760-5
Mandegari, M., Farzad, S., & Görgens, J. F. (2018). A new insight into sugarcane biorefineries with fossil fuel co-combustion: Techno-economic analysis and life cycle assessment. Energy Conversion and Management, 165, 76-91. https://doi.org/10.1016/j.enconman.2018.03.057
Mandegari, M. A., Farzad, S., Van Rensburg, E., & Görgens, J. F. (2017). Multi‐criteria analysis of a biorefinery for co‐production of lactic acid and ethanol from sugarcane lignocellulose. Biofuels, Bioproducts and Biorefining, 11(6), 971-990. https://doi.org/10.1002/bbb.1801
Van der Merwe, A. B., Cheng, H., Görgens, J. F., & Knoetze, J. H. (2013). Comparison of energy efficiency and economics of process designs for biobutanol production from sugarcane molasses. Fuel, 105, 451-458. https://doi.org/10.1016/j.fuel.2012.06.058
Moncada, J., El-Halwagi, M. M., & Cardona, C. A. (2013). Techno-economic analysis for a sugarcane biorefinery: Colombian case. Bioresource technology, 135, 533-543. https://doi.org/10.1016/j.biortech.2012.08.137
Ortiz‐Muñiz, B., Carvajal‐Zarrabal, O., Torrestiana‐Sanchez, B., & Aguilar‐Uscanga, M. G. (2010). Kinetic study on ethanol production using Saccharomyces cerevisiae ITV‐01 yeast isolated from sugar cane molasses. Journal of Chemical Technology & Biotechnology, 85(10), 1361-1367. https://doi.org/10.1002/jctb.2441
Peters, M. S., Timmerhaus, K. D., & West, R. E. (1991). Plant design and economics for chemical engineers. New York: McGraw-Hill.
Moncada, J., El-Halwagi, M. M., & Cardona, C. A. (2013). Techno-economic analysis for a sugarcane biorefinery: Colombian case. Bioresource technology, 135, 533-543. https://doi.org/10.1016/j.biortech.2013.04.048
Rendon-Sagardi, M. A., Sanchez-Ramirez, C., Cortes-Robles, G., Alor-Hernandez, G., & Cedillo-Campos, M. G. (2014). Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico. Applied energy, 123, 358-367. https://doi.org/10.1016/j.apenergy.2014.01.023
Rincón, L. E., Becerra, L. A., Moncada, J., & Cardona, C. A. (2014). Techno-economic analysis of the use of fired cogeneration systems based on sugar cane bagasse in south eastern and mid-western regions of Mexico. Waste and biomass valorization, 5, 189-198. https://doi.org/10.1007/s12649-013-9224-0
SAGARPA Database (2016). Melaza de caña de azúcar y su uso en la fabricación de dietas para ganado
Secretaria de Economia Database (2017) Sistema Nacional de Información e Integración de Mercados. http://www.economia-sniim.gob.mx/2010prueba/CuadroAnualINS.asp. Accessed 2 Oct 2016
Sentiés-Herrera, H. E., Gómez-Merino, F. C., Valdez-Balero, A., Silva-Rojas, H. V., & Trejo-Téllez, L. I. (2014). The agro-Industrial sugarcane system in Mexico: Current status, challenges and opportunities. Journal of Agricultural Science, 6(4), 26. https://doi.org/10.5539/jas.v6n4p26
Silalertruksa, T., Pongpat, P., & Gheewala, S. H. (2017). Life cycle assessment for enhancing environmental sustainability of sugarcane biorefinery in Thailand. Journal of Cleaner Production, 140, 906-913. https://doi.org/10.1016/j.jclepro.2016.06.010
Sun, Y., Xu, Z., Zheng, Y., Zhou, J., & Xiu, Z. (2019). Efficient production of lactic acid from sugarcane molasses by a newly microbial consortium CEE-DL15. Process Biochemistry, 81, 132-138. https://doi.org/10.1016/j.procbio.2019.03.022
Tan, K. T., Lee, K. T., & Mohamed, A. R. (2008). Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol. Energy policy, 36(9), 3360-3365. https://doi.org/10.1016/j.enpol.2008.05.016
Thakur, A., Panesar, P. S., & Saini, M. S. (2019). L (+)-Lactic acid production by immobilized Lactobacillus casei using low cost agro-industrial waste as carbon and nitrogen sources. Waste and Biomass Valorization, 10, 1119-1129. https://doi.org/10.1007/s12649-017-0129-1
Tinôco, D., de Castro, A. M., Seldin, L., & Freire, D. M. (2021). Production of (2R, 3R)-butanediol by Paenibacillus polymyxa PM 3605 from crude glycerol supplemented with sugarcane molasses. Process Biochemistry, 106, 88-95. https://doi.org/10.1016/j.procbio.2021.03.030
der Merwe, V., & Blignault, A. (2010). Evaluation of different process designs for biobutanol production from sugarcane molasses (Doctoral dissertation, Stellenbosch: Stellenbosch University). http://scholar.sun.ac.za/handle/10019.1/4374
Vargas Santillán, A., Farias Sanchez, J.C., Pineda Pimentel, M.G., & Castro Montoya, A.J., (2016). Olefins and ethanol from polyolefins: analysis of potential chemical recycling of poly (ethylene) Mexican case. International Journal of Chemical Reactor Engineering, 14(6), 1289-1300. https://doi.org/10.1515/ijcre-2015-0217
Vilela, R. S., Fuess, L. T., Saia, F. T., Silveira, C. R. M., Oliveira, C. A., Andrade, P. A., ... & Damianovic, M. H. R. Z. (2021). Biofuel production from sugarcane molasses in thermophilic anaerobic structured-bed reactors. Renewable and Sustainable Energy Reviews, 144, 110974. https://doi.org/10.1016/j.rser.2021.110974
Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas (No. DOE/GO-102004-1992). National Renewable Energy Lab., Golden, CO (US). https://doi.org/10.2172/15008859
Zhang, K., Ding, Z., Mo, M., Duan, W., Bi, Y., & Kong, F. (2020). Essential oils from sugarcane molasses: Chemical composition, optimization of microwave-assisted hydrodistillation by response surface methodology and evaluation of its antioxidant and antibacterial activities. Industrial Crops and Products, 156, 112875. https://doi.org/10.1016/j.indcrop.2020.112875
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Agustin Jaime Castro-Montoya, Tania Méndez-Romero, Ana Alejandra Vargas-Tah, Noe Aguilar-Ribera, Pedro Eduardo Lazaro-Mixteco

This work is licensed under a Creative Commons Attribution 4.0 International License.