Use of corn cob through xylan extraction and its potential use as a substrate for the quantification of xylanase enzymatic activity

PDF downloads: 682

Authors

  • Rafael Uzárraga-Salazar Laboratorio de Bioprocesos y Biotecnología, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, México
  • Yamilet Nallely Reyes-Ramírez Laboratorio de Bioprocesos y Biotecnología, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, México
  • Tania García-Herrera Laboratorio de Bioprocesos y Biotecnología, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, México
  • Enrique Flores-Andrade Laboratorio de Alimentos y Sistemas Agroalimentarios, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, México
  • Marisol Castillo-Morales Laboratorio de Alimentos y Sistemas Agroalimentarios, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, México

DOI:

https://doi.org/10.56845/rebs.v3i1.41

Keywords:

extraction, hemicelluloses, xylanase, hydrolysis

Abstract

In Mexico, it is estimated that the amount of residues produced by the planting of the ten main crops is approximately 45 million tons of dry matter, of which just over 25 million tons are corn cob. The corn cob contains large amounts of hemicellulose, mainly composed of xylan, which can have various industrial uses. For this reason, in the present study, fresh and dry corn cob was used with two particle sizes: 0.105 mm and 0.42 mm, to carry out an exhaustive alkaline extraction of xylan and where eight fractions of hemicelluloses extracts were obtained. Each of the fractions were subjected to enzymatic hydrolysis for eight hours with a commercial xylanase (Livanol Devisco 1500) and as internal control, beechwood xylan (Sigma Aldrich, X4252) was used, of which only 6.9 ± 2.25 g/L were released. reducing sugars. It was found that the fractions from the steam treatment and the fraction from the alkaline extraction precipitated with alcohol, both for fresh corn cob, were released a quantity of reducing sugars very similar to commercial xylan with 7.10 ± 2.02 and 7.24 ± 0.37 g/L, respectively. Finally, it was possible to determine that although the 8 fractions obtained in the present study can be used as substrates to determine the xylanase enzymatic activity, the best was the fraction of the alkaline extraction since 0.236 ± 0.03 IU/mL were quantified, while for the commercial substrate (beechwood xylan) an activity of 0.287 ± 0.01 IU/mL was obtained.

References

Biely, P., Vršanská, M., Tenkanen, M., & Kluepfel, D. (1997). Endo-B-1,4-xylanase families: differences in catalytic properties. Journal of Biotechnology, 151-166.

Chapla D., Pandit P. and Shah A. (2012). Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresource Technology 115: 215–221.

Cordoba, J., Salcedo, E., Rodriguez, R., Francisco Zamora, J., Manriquez, R., Contreras, H., y Delgado, E. (2013). Caracterización y valoración química del olote: degradación hidrotérmica bajo condiciones subcríticas. Revista latinoamericana de química.

Corradini, F.A.S., Baldez, T.O., Milessi, T.S.S., Tardioli, P.W., Ferreira, A.G., de Campos G.R. and de Giordano, R. (2018). Eucalyptus xylan: An in- house-produced substrate for xylanase evaluation to substitute birchwood xylan. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2018.05.088.

Driss, D., Zouari_Ellouzi, S., Chaari, F., Kallel, F., Ghazela, I., Bouaziz, F., Chaabouni, S. (2014). Production and in vitro evaluation of xylooligosaccharides generated from corncobs using. Journal of Molecular Catalysis B: Enzymatic.

Ebringerová, A., Heinze, T. (2000). Xylan and xylan derivatives - biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromolecular Rapid Communications, 21(9), 542–556.

Egüés, I., Sanchez, C., Mondragon, I., & Labidi, J. (2012). Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresource Technology, 103(1), 239–248.

Farhat, W., Venditti, R., Quick, A., Taha, M., Mignard, N., Becquart, F., & Ayoub, A. (2017). Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Industrial Crops and Products, 107, 370–377.

Jian-Long, X., Shuai, Z., Rui-Ming, L., Xin, Y., Sui-Xin, J., Lin-Hui, S., Qi, Y., Cheng-Jie, D., Jun-Liang, L., Jia-Xun, F. (2016). A biotechnological process efficiently co-produces two high value-added products, glucose and xylooligosaccharides, from sugarcane bagasse. Bioresource Technology, 130-133.

Kaliyan, N., y Morey, R. (2010). Densification characteristics of corn cobs. Fuel Processing Technology, 91(5), 559–565.

Liu, J., Chinga-Carrasco, G., Cheng, F., Xu, W., Willför, S., Syverud, K., & Xu, C. (2016). Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose, 23(5), 3129–3143.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.

Pointner, M., Kuttner, P., Obtrlik, T., Jäger, A., Kahr, H. (2014). Composition of corncobs as a substrate for fermentation of biofuels. Agronomy, Research, 12(2), 391-396.

SAGARPA (2010). (Disponible en línea en https://www.sagarpa.mx)(Consulta el 15 de marzo de 2019).

Saha, B. C. (2002). Production, purification and properties of xylanase from a newly isolated. Fusarium proliferatum. Process Biochemistry, 1279-1289.

Sharma K., Khaire K.C., Thakur A., Moholkar V.S. and Goyal A. (2020). Acacia xylan as a substitute for commercially available xylan and its application in the production of xylooligosaccharides. ACS Omega. 5:13729−13738.

Sporck D., Reinoso F.A., Rencoret J., Gutiérrez A., del Rio J.C., Ferraz A., and Milagres A.M. (2017). Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches. Biotechnol. Biofuels 10:296.

Sun, X. F., Xu, F., Sun, R. C., Geng, Z. C., Fowler, P., Baird, M. S. (2005). Characteristics of degraded hemicellulosic polymers obtained from steam exploded wheat straw. Carbohydrate Polymers, 60(1), 15–26.

Sun, Y. y Cheng, J. (2005). Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology, 96(14), 1599–1606.

Teng, C., Yan, Q., Jiang , Z., Fan, G., y Shi, B. (2010). Production of xylooligosaccharides from the steam explosion liquor. Bioresource Technology, 101(19), 7679-7682.

Velmurugan, P., Hur, H., Balachandar, V., Kamala-Kannan, S., Lee, K.-J., Lee, S.-M., Oh, B.-T. (2011). Monascus pigment production by solid-state fermentation with corn cob substrate. Journal of Bioscience and Bioengineering, 112(6), 590–594.

Yang R., Xu S., Wang Z. and Yang W. (2005). Aqueous extraction of corncob xylan and production of xylooligosaccharides. LWT 38: 677–682. Yang R., Zhang C., Feng H. and Yang W. (2006). A Kinetic Study of Xylan Solubility and Degradation during Corncob Steaming. Biosystems Engineering 93(4): 375–382.

Downloads

Published

2021-06-10

How to Cite

Uzárraga-Salazar, R., Reyes-Ramírez, Y. N., García-Herrera, T., Flores-Andrade, E., & Castillo-Morales, M. (2021). Use of corn cob through xylan extraction and its potential use as a substrate for the quantification of xylanase enzymatic activity. Renewable Energy, Biomass & Sustainability, 3(1), 86–94. https://doi.org/10.56845/rebs.v3i1.41

Issue

Section

Original Articles