Synthesis of heterogeneous metathesis catalysts for the development of sustainable processes

DOI:
https://doi.org/10.56845/rebs.v3i1.40Keywords:
heterogeneous catalysis, polymer gels, metathesis, sustainable processesAbstract
In recent decades, it has been tried to develop processes that involve the use of catalysts that can be recovered from the reaction medium, to make them green and sustainable. Approximately, 90 % of all processes in chemistry and petrochemicals use heterogeneous catalysts. In this sense, the supported heterogeneous catalysts present advantages in the purification of the products and the reduction of costs. In the present work, the synthesis of a new heterogeneous supported catalyst, highly active in the metathesis reaction, based on a ruthenium-alkylidene complex, was carried out. The new catalyst was obtained by anchoring of dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene](benzylidene)(tricyclohexylphosphine)ruthenium (II) (second generation Grubbs) in various silylated polymeric gels, based on 2-norbornene-5,6-dicarboxylic anhydride (NDA) and cis-cyclooctene (CO) cross-linked with various percentages of 3-aminopropyltriethoxysilane (APTES) (5%, 15%, 100%). The new heterogeneous catalyst was successfully used in the depolymerization reaction via metathesis of natural rubber from Oaxaca (HNO), using 1-octene as CTA; observing the formation of liquid oligomers, achieving a decrease in molecular weight from 137.941 g/mol to 297 g/mol; proving, in this way, its high effectiveness.
References
Cambra, J. F., Barrio, V. L., Arias, P. L., & Requies, J. (2019). Preface to International Symposium of Catalysis for Clean Energy and Sustainable Chemistry (CCESC2018). Topics in Catalysis 2019 62:5, 62(5), 427–428.
Flory, P. J. (1950). Statistical mechanics of swelling of network structures. The Journal of Chemical Physics, 18(1), 108–111.
Flory, P. J., & Rehner, J. (1943a). Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. The Journal of Chemical Physics, 11(11), 512–520.
Flory, P. J., & Rehner, J. (1943b). Statistical mechanics of cross-linked polymer networks II. Swelling. The Journal of Chemical Physics, 11(11), 521–526.
Gutiérrez, S. (2004). Sintesis de productos bien definidos, vía depolimerizacion por metatesis, de hule natural y cis-1,4-polibutadieno. Universidad Nacional Autónoma de México.
Gutiérrez, S., Vargas, S. M., & Tlenkopatchev, M. A. (2004a). Computational study of metathesis degradation of rubber. Distributions of products for the ethenolysis of 1,4-polyisoprene. Polymer Degradation and Stability, 83(1), 149–156.
Gutiérrez, S., Vargas, S. M., & Tlenkopatchev, M. A. (2004b). Molecular modeling of ring-chain equilibria for the ring-opening cross-metathesis of cis,cis-1,5-dimethyl-cycloocta-1,5-diene with ethylene at T = 298.15 K. Journal of Chemical Thermodynamics, 36(1), 29–36.
Hagen, J. (2015). Heterogeneous Catalysis: Fundamentals. In Industrial Catalysis: A Practical Approach (pp. 99–210). Wiley-VCH Verlag GmbH & Co. KGaA.
Kamel, S., & Khattab, T. A. (2021). Recent advances in cellulose supported metal nanoparticles as green and sustainable catalysis for organic synthesis. Cellulose 2021 28:8, 28(8), 4545–4574.
Kandathil, V., Veetil, A. K., Patra, A., Moolakkil, A., Kempasiddaiah, M., Somappa, S. B., Rout, C. S., & Patil, S. A. (2021). A green and sustainable cellulosic-carbon-shielded Pd–MNP hybrid material for catalysis and energy storage applications. Journal of Nanostructure in Chemistry 2021 11:3, 11(3), 395–407.
Martínez, A., Clark-Tapia, R., Gutierrez, S., & Tlenkopatchev, M. (2014). Synthesis and Characterization of New Ruthenium Vinylidene Complexes. Letters in Organic Chemistry, 11(10), 748–754.
Pineda, A., Vargas, J., Santiago, A., Martínez, A., Cruz-Morales, J., Reyes, S., Burelo, M., & Gutiérrez, S. (2018). Metátesis de olefinas en México: desarrollo y aplicaciones en nuevos materiales poliméricos y en química sustentable. Materiales Avanzados, 29, 65–81.
Ramírez Álvarez, R. (2021). Innovación y evaluación de rutas verdes para obtener una mezcla de biocombustibles tipo diésel-biodiésel. Universidad Nacional Autónoma de México.
Ünnü, V. Ş., & Çetinkaya, S. (2018). Synthesis and Catalytic Activity of PolyHIPE-Supported NHC-Bearing Ruthenium Initiator for ROMP. Catalysis Letters, 148(8), 2432–2445.
Yilmaz, B., & Müller, U. (2009). Catalytic applications of zeolites in chemical industry. Topics in Catalysis, 52(6–7), 888–895.
Zárate-Saldaña, D., Landeros-Rivera, B., Cruz-Morales, J. A., & Gutiérrez, S. (2020). Metathesis of norbornene-derivatives bearing trimethylsilyl groups using Ru-alkylidene catalysts: An experimental and computational study. Journal of Organometallic Chemistry, 913, 121206.
Zárate Saldaña, D. (2021). Preparación de nuevas membranas poliméricas biodegradables a a base de derivados sililados de norborneno. Universidad Nacional Autónoma de México.