Production of VFAs through anaerobic digestion of cattle and swine manure
DOI:
https://doi.org/10.56845/rebs.v7i2.655Keywords:
valorization of waste, acidogenic fermentation, environmental biotechnologyAbstract
Anaerobic digestion (AD) is a key biotechnological process for the valorization of organic residues, as it reduces their pollutant load and generates valuable products such as volatile fatty acids (VFAs). These compounds have industrial applications as precursors for biopolymers, solvents, and biofuels. In this study, the kinetics of VFAs were evaluated using cattle manure (CM) and swine manure (SM), incubated at 37 °C for 18 days. A completely randomized design was applied with ten sampling times and three replicates per treatment. VFA quantification was performed by HPLC, and parameters such as chemical oxygen demand (COD), pH, and nutrient concentrations (N, P, K) were also analyzed. SM reached a maximum production of 1.699 g/L at day 4, whereas CM peaked at 1.817 g/L on day 10. In both substrates, pH exhibited an initial decline, indicating hydrolytic and acidogenic phases, followed by stabilization toward acetogenic and methanogenic stages. Reductions in COD, nitrogen, and phosphorus were also observed, reflecting intense microbial activity. Both manures proved viable, with SM being more efficient at early stages and CM performing better in later phases. These findings provide key information for the design of biorefineries within circular economy frameworks.References
American Public Health Association, American Water Works Association, & Water Environment Federation. (2017). Standard methods for the examination of water and wastewater (L. L. Bridgewater, R. B. Baird, A. D. Eaton, & E. W. Rice, Eds.; 23rd ed.). American Public Health Association.
Anukam, A., Mohammadi, A., Naqvi, M., & Granström, K. (2019). A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes, 7(8), Article 8. https://doi.org/10.3390/pr7080504
Atelge, M. R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D. D., Chang, S. W., Atabani, A. E., Al-Muhtaseb, A. H., & Unalan, S. (2020). Biogas production from organic waste: Recent progress and perspectives. Waste and Biomass Valorization, 11(3), 1019–1040. https://doi.org/10.1007/s12649-018-00546-0
Bajpai, P. (2017). Basics of anaerobic digestion process. En Anaerobic technology in pulp and paper industry (pp. 7–12). Springer. https://doi.org/10.1007/978-981-10-4130-3_2
Castro-Ramos, J. J., Solís-Oba, A., Solís-Oba, M., Calderón-Vázquez, C. L., Higuera-Rubio, J. M., & Castro-Rivera, R. (2022). Effect of the initial pH on the anaerobic digestion process of dairy cattle manure. AMB Express, 12(1), 162. https://doi.org/10.1186/s13568-022-01486-8
Castro-Sierra, A., Espinosa-Solares, T., Houbron, E., Castro-Rivera, R., & Azcárraga-Salinas, B. Y. (2024). Production of phytoregulators during anaerobic digestion of bovine and swine manures. Revista Mexicana de Ingeniería Química, 23(3). https://doi.org/10.24275/rmiq/Bio24289
Chen, T., Song, X., & Xing, M. (2023). Study on anaerobic phosphorus release from pig manure and phosphorus recovery by vivianite method. Scientific Reports, 13(1), 16095. https://doi.org/10.1038/s41598-023-43216-5
Cisneros De La Cueva, S., Veana Hernández, F., Arjona López, M. A., Álvarez Guzmán, C. L., & Pérez Vega, S. B. (2021). Optimización de las variables del proceso de digestión anaerobia de lactosuero en la producción de biogás. Revista Internacional de Contaminación Ambiental. https://doi.org/10.20937/RICA.53879
Colzi, A., & Estrada, J. (2020). Producción de ácidos grasos volátiles a partir de fangos de depuradora. AQUAVALL. Recuperado de https://aquavall.es/wp-content/uploads/2020/07/Apuntes-de-Innovacion-AquaVall-01-Produccion-de-acidos-grasos-TROVANT-web.pdf
Franke-Whittle, I. H., Walter, A., Ebner, C., & Insam, H. (2014). Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Management, 34(11), 2080–2089. https://doi.org/10.1016/j.wasman.2014.07.020
Giduthuri, A. T., & Ahring, B. K. (2023). Current status and prospects of valorizing organic waste via arrested anaerobic digestion: Production and separation of volatile fatty acids. Fermentation, 9(1), Article 1. https://doi.org/10.3390/fermentation9010013
González, E. T., & Jurado, P. C. (2017). Sustratos y producción de biogás en biodigestores: Una revisión sistemática. Ingeciencia, 2(1), Article 1. Recuperado de https://revistas.ucentral.edu.co/index.php/Ingeciencia/article/view/2352
González-Herrera, J. E., Hernández-Beltrán, Y., González, L. M. L., & Hernández, J. J. (2021). Digestión anaerobia de suero de queso utilizando inóculo de estiércol porcino a diferentes relaciones inóculo-sustrato. Revista ION, 48(3).
Harirchi, S., Wainaina, S., Sar, T., Nojoumi, S. A., Parchami, M., Parchami, M., Varjani, S., Khanal, S. K., Wong, J., Awasthi, M. K., & Taherzadeh, M. J. (2022). Microbiological insights into anaerobic digestion for biogas, hydrogen, or volatile fatty acids (VFAs): A review. Bioengineered, 13(3), 6521–6557. https://doi.org/10.1080/21655979.2022.2035986
Kadam, R., Jo, S., Lee, J., Khanthong, K., Jang, H., & Park, J. (2024). A review on the anaerobic co-digestion of livestock manures in the context of sustainable waste management. Energies, 17(3), Article 3. https://doi.org/10.3390/en17030546
Lee, J.-H., Kim, C.-H., & Yoon, Y.-M. (2023). Effects of hydrothermal pretreatment on methane potential of anaerobic digestion sludge cake of cattle manure containing sawdust as bedding materials. Animal Bioscience, 36(5), 818–828. https://doi.org/10.5713/ab.22.0434
Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15(10), Article 10. https://doi.org/10.3390/ijerph15102224
Patel, A., Mahboubi, A., Horváth, I. S., Taherzadeh, M. J., Rova, U., Christakopoulos, P., & Matsakas, L. (2021). Volatile fatty acids generated by anaerobic digestion serve as feedstock for oleaginous microorganisms to produce biodiesel and added-value compounds. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.614612
Risberg, K., Cederlund, H., Pell, M., Arthurson, V., & Schnürer, A. (2017). Comparative characterization of digestate versus pig slurry and cow manure: Chemical composition and effects on soil microbial activity. Waste Management, 61, 529–538. https://doi.org/10.1016/j.wasman.2016.12.016
Solarte Toro, J. C., Mariscal Moreno, J. P., & Aristizábal Zuluaga, B. H. (2017). Evaluación de la digestión y co-digestión anaerobia de residuos de comida y de poda en bioreactores a escala laboratorio. Revista ION, 30(1), 105–116. https://doi.org/10.18273/revion.v30n1-2017008
Tabarez Hincapie, K. V., Ramón Vanegas, A. A., Carrasco Salcedo, L. M., & Vásquez Bustamante, J. E. (2024). Evaluación de la producción de biogás a partir de cáscara y mucílago de cacao. Revista Ambiental Agua, Aire y Suelo, 15(1), Article 1. https://doi.org/10.24054/raaas.v15i1.2891
Tambone, F., Genevini, P., D’Imporzano, G., & Adani, F. (2009). Assessing amendment properties of digestate by studying the organic matter composition and degree of biological stability during anaerobic digestion of the organic fraction of MSW. Bioresource Technology, 100(12), 3140–3142. https://doi.org/10.1016/j.biortech.2009.02.012
Wang, Z., Wang, W., Li, P., Leng, Y., & Wu, J. (2022). Continuous production of volatile fatty acids (VFAs) from swine manure: Determination of process conditions, VFAs composition distribution and fermentation broth availability analysis. Water, 14(12), Article 12. https://doi.org/10.3390/w14121935
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andres Castro-Sierra, María Myrna Solís-Oba, Teodoro Espinosa-Solares, Eric Houbron, José Agustín Pacheco-Ortíz, Brenda Yanin Azcárraga-Salinas, Javier Ruiz-Romero

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright © D.R. Asociación Latinoamericana de Desarrollo Sustentable y Energías Renovables A. C.,