C and N Mineralization Dynamics in Composts: Prediction of Soluble Organic Carbon by Multiple Nonlinear Regression

PDF downloads: 131

Authors

  • Eloy Conde-Barajas Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT en Celaya, Celaya, Guanajuato, México
  • Héctor Iván Bedolla-Rivera Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT en Celaya, Celaya, Guanajuato, México
  • María de la Luz Xóchilt Negrete-Rodríguez Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT en Celaya, Celaya, Guanajuato, México
  • Sandra Lizeth Galván-Diaz Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT en Celaya, Celaya, Guanajuato, México
  • Midory Samaniego-Hernández Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT en Celaya, Celaya, Guanajuato, México
  • Francisco Paúl Gámez-Vázquez Campo Experimental Bajío, INIFAP, Celaya, Guanajuato, México

DOI:

https://doi.org/10.56845/rebs.v3i2.55

Keywords:

biosolids, nitrates, enzymes, principal component analysis, multivariate analysis

Abstract

Urban biosolids present a considerable concentration of nutrients, which are currently wasted and deposited in landfills causing environmental contamination. In the present study, a dimensionality reduction technique is used to select indicators with a higher relationship in their variability. Subsequently, a multivariate nonlinear regression process is used to establish an equation that allows predicting the behavior of the soluble organic carbon indicator. The indicators with the greatest relationship with the variability of the data analyzed were N-NO3-, N-NH4+/N-NO3- and IES. The resulting model presented a correlation of 30% with the soluble organic carbon indicator in the composting systems.

References

Alef, K., & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Elsevier. https://doi.org/10.1016/B978-0-12-513840- 6.X5014-9

Bai, Z., Caspari, T., Gonzalez, M. R., Batjes, N. H., Mäder, P., Bünemann, E. K., de Goede, R., Brussaard, L., Xu, M., Ferreira, C. S. S., Reintam, E., Fan, H., Mihelič, R., Glavan, M., & Tóth, Z. (2018). Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agriculture, Ecosystems and Environment, 265(November 2017), 1–7. https://doi.org/10.1016/j.agee.2018.05.028

Bremner, J. M. (2018). Nitrogen-Total. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Summer (Eds.), Methods of Soil Analysis: Chemical Methods (pp. 1085–1121). https://doi.org/10.2136/sssabookser5.3.c37

de Mendiburu, F. (2020). agricolae: Statistical Procedures for Agricultural Research (R package version 1.3-3). https://cran.r- project.org/package=agricolae

de Oliveira, M. M., Coldebella, A., Filho, P. B., & de Oliveira, P. A. V. (2018). Aeration frequency on accelerated composting of animal carcasses. Ciencia e Agrotecnologia, 42(6), 653–665. https://doi.org/10.1590/1413-70542018426021818

Ebrahimi, F., Lewis, A. J., Sales, C. M., Suri, R., & McKenzie, E. R. (2021). Linking PFAS partitioning behavior in sewage solids to the solid characteristics, solution chemistry, and treatment processes. Chemosphere, 271, 129530. https://doi.org/10.1016/j.chemosphere.2020.129530

Green, V. S., Stott, D. E., & Diack, M. (2006). Assay for Fluorescein Diacetate Hydrolytic Activity: Optimization for Soil Samples. Soil Biology and Biochemistry, 38(4), 693–701. https://doi.org/10.1016/j.soilbio.2005.06.020

Hendrickx, J. M. H., Das, B., Corwin, D. L., Wraith, J. M., & Kachanoski, R. G. (2002). Relationship Between Soil Water Solute Concentration and Apparent Soil Electrical Conductivity. In J. H. Dane & G. C. Topp (Eds.), Methods of Soil Analysis: Part 4 (pp. 1275–1282). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.4

Johnson, R., & Wichern, D. (2014). Applied Multivariate Statistical Analysis (6a ed.). Pearson Education Limited.

Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1), 68–72. https://doi.org/10.1007/bf00257924

Kuhn, M. (2021). caret: Classification and Regression Training (R package version 6.0-88). https://cran.r-project.org/package=caret

Medina-Herrera, M. del R., Negrete-Rodríguez, M. de la L. X., Álvarez-Trejo, J. L., Samaniego-Hernández, M., González-Cruz, L., Bernardino-Nicanor, A., & Conde-Barajas, E. (2020). Evaluation of non-conventional biological and molecular parameters as potential indicators of quality and functionality of urban biosolids used as organic amendments of agricultural soils. Applied Sciences, 10(2), 517. https://doi.org/10.3390/app10020517

Muñoz-Rojas, M., Erickson, T. E., Dixon, K. W., & Merritt, D. J. (2016). Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restoration Ecology, 24, S43–S52. https://doi.org/10.1111/rec.12368

R Core Team. (2021). R: language and environment for statistical computing (1.3.2). R foundation for statistical computing.

Secretaría de Medio Ambiente del Distrito Federal [SEDEMA]. (2012). NADF-020-AMBT-2011. http://www.sedema.cdmx.gob.mx/sedema/images/archivos/sedema/leyes-reglamentos/normas/locales/NADF-020-AMBT-2011.pdf

Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT]. (2003). NOM-004-SEMARNAT-2002. Diario Oficial de la Federación. http://dof.gob.mx/nota_detalle.php?codigo= 691939&fecha=15/08/2003

Sparling, G. P., & Williams, B. L. (1986). Microbial biomas in organic soils: Estimation of biomass C, and effect of glucose or cellulose amendments on the amounts of N and P by fumigation. Soil Biology & Biochemestry, 18(5), 507–513. https://doi.org/10.1016/0038-0717(86)90008-8

Thomas, G. W. (2018). Soil pH and Soil Acidity. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Summer (Eds.), Chemical Methods (pp. 475–490). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c16

Tiquia, S. M., Tam, N. F. Y., & Hodgkiss, I. J. (1998). Salmonella elimination during composting of spent pig litter. Bioresource Technology, 63(2), 193–196. https://doi.org/10.1016/S0960-8524(97)00113-2

U.S. Environmental Protection Agency [US EPA]. (1993). Part 503 - Standards for the Use or Disposal of Sewage Sludge. Electronic Code of Federal Regulations (e-CFR), 1–29.

von Mersi, W., & Schinner, F. (1991). An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 11(3), 216–220. https://doi.org/10.1007/bf00335770

Walkley, A., & Black, I. A. (1934). An Examination of Different Methods for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003

Yakovchenko, V. P., & Sikora, L. J. (1998). Modified dichromate method for determining low concentrations of extractable organic carbon in soil. Communications in Soil Science and Plant Analysis, 29(3–4), 421–433. https://doi.org/10.1080/00103629809369955

Yu, P., Liu, S., Zhang, L., Li, Q., & Zhou, D. (2018). Selecting the Minimum Data Set and Quantitative Soil Quality Indexing of Alkaline Soils Under Different Land Sses in Northeastern China. Science of The Total Environment, 616–617, 564–571. https://doi.org/10.1016/j.scitotenv.2017.10.301

Downloads

Published

2021-11-15

How to Cite

Conde-Barajas, E., Bedolla-Rivera, H. I., Negrete-Rodríguez, M. de la L. X., Galván-Diaz, S. L., Samaniego-Hernández, M., & Gámez-Vázquez, F. P. (2021). C and N Mineralization Dynamics in Composts: Prediction of Soluble Organic Carbon by Multiple Nonlinear Regression. Renewable Energy, Biomass & Sustainability, 3(2), 69–74. https://doi.org/10.56845/rebs.v3i2.55

Issue

Section

Original Articles