Evaluation of acid-thermal pretreatments and enzymatic saccharification to obtain fermentable sugars from the juice and bagasse of Agave salmiana leaves

PDF downloads: 168

Authors

  • Sergio Martínez-Hernández Instituto de Biotecnología y Ecología Aplicada (INBIOTECA); Xalapa, Veracruz, México
  • Alonso Guadalupe Hernández-Mendoza Instituto de Biotecnología y Ecología Aplicada (INBIOTECA); Xalapa, Veracruz, México
  • Héctor Arturo Ruiz-Leza Universidad Autónoma de Coahuila (UAdeC); Saltillo, Coahuila, México
  • Angel Isauro Ortiz-Ceballos Instituto de Biotecnología y Ecología Aplicada (INBIOTECA); Xalapa, Veracruz, México
  • Alejandro Antonio Castro-Luna Instituto de Biotecnología y Ecología Aplicada (INBIOTECA); Xalapa, Veracruz, México
  • Magdiel Láinez-González Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ); Guadalajara, Jalisco; México

DOI:

https://doi.org/10.56845/rebs.v3i1.39

Keywords:

Agave salmiana-leaf, acid-thermal pretreatments, enzymatic saccharification, fermentable, reducing sugars

Abstract

This study presents the results of acid-thermal pretreatments and enzymatic saccharification for the production of fermentable sugars from the juice and bagasse of Agave salmiana leaves. In the acid-thermal pretreatment, H2SOwas used while in the enzymatic saccharification the commercial enzyme Cellic Ctec2 (Novozyme) was used. In the results it was found that the best conditions of the acid thermal pretreatment (H2SO4 % (v/v) at 100 ° C for 30 min) for the juice generated a concentration of 43.65 ± 1.36 g/L of reducing sugars. In bagasse, the best conditions (H2SO4 % (p/v) at 120 ° C for 60 min) produced a concentration of 37.35 ± 1.65 g/L of reducing sugars in the hydrolysates. In the enzymatic saccharification at 15 FPU/g substrate and solids load of 10 % (p/v), a concentration of 87.37 ± 1.27 g/L of reducing sugars was obtained after 72 h. The results obtained demonstrate the potential of the integral use of bagasse and juices from the leaves of Agave salmiana as raw material to produce fermentable sugars.

References

Castañeda-Nava, J. J., Rodríguez-Domínguez, J. M., Camacho-Ruiz, R. M., Gallardo-Valdez, J., Villegas-García, E., & Gutiérrez-Mora, A. (2019). Morphological comparison among populations of Agave salmiana Otto ex Salm-Dyck (Asparagaceae), a species used for mezcal production in Mexico. Flora: Morphology, Distribution, Functional Ecology of Plants, 255(October 2018), 18–23. https://doi.org/10.1016/j.flora.2019.03.019

Chávez-Romero, F.-M., , Yee-Madeira, H. T. ., , García-Zebadúa, J. C.1 , González-Montoya, M. ., , Mora-Escobedo, R. ., & *. (2018). Disintegration treatments of Agave Salmiana waste : Lignocellulose characterization by physicochemical , thermogravimetric and spectroscopic studies Tratamientos de desintegración de desechos de Agave Salmiana : Caracterización de la lignocelulosa por est. REVISTA BIOCIENCIA, 5(1), 1–18.

Corbin, K. R., Betts, N. S., van Holst, N., Jiranek, V., Chambers, D., Byrt, C. S., Fincher, G. B., & Burton, R. A. (2016). Low-Input Fermentations of Agave tequilana Leaf Juice Generate High Returns on Ethanol Yields. Bioenergy Research, 9(4), 1142–1154. https://doi.org/10.1007/s12155-016-9755-x

Corbin, K. R., Byrt, C. S., Bauer, S., Debolt, S., Chambers, D., Holtum, J. A. M., Karem, G., Henderson, M., Lahnstein, J., Beahan, C. T., Bacic, A., Fincher, G. B., Betts, N. S., & Burton, R. A. (2015). Prospecting for energy-rich renewable raw materials: Agave leaf case study. PLoS ONE, 10(8), 1–23. https://doi.org/10.1371/journal.pone.0135382

Díaz-Blanco, D. I., de La Cruz, J. R., López-Linares, J. C., Morales-Martínez, T. K., Ruiz, E., Rios-González, L. J., Romero, I., & Castro, E. (2018). Optimization of dilute acid pretreatment of Agave lechuguilla and ethanol production by co-fermentation with Escherichia coli MM160. Industrial Crops and Products, 114(February), 154–163. https://doi.org/10.1016/j.indcrop.2018.01.074

García Núñez, R. M. G. N. M., Galán Reséndiz, M., Cuevas Sánchez, J. A., & Álvarez Hernández, R. (2020). Identificación y caracterización morfológica de agaves en sistemas agroforestales con metepantle en tierras campesinas. Revista Mexicana de Ciencias Agrícolas, 11(4), 917–929. https://doi.org/10.29312/remexca.v11i4.2468

Godínez-Hernández, C. I., Aguirre-Rivera, J. R., Juárez-Flores, B. I., Ortiz-Pérez, M. D., & Becerra-Jiménez, J. (2015). Extraction and characterization of Agave salmiana Otto ex Salm-Dyck fructans. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 22(1), 59–72. https://doi.org/10.5154/r.rchscfa.2015.02.007

González-Llanes, M. D., Hernández-Calderón, O. M., Rios-Iribe, E. Y., Alarid-García, C., Castro Montoya, A. J., & Escamilla-Silva, E. M. (2018). Fermentable sugars production by enzymatic processing of agave leaf juice. Canadian Journal of Chemical Engineering, 96(3), 639–650. https://doi.org/10.1002/cjce.22959

Láinez, M., Ruiz, H. A., Arellano-Plaza, M., & Martínez-Hernández, S. (2019). Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S. cerevisiae and K. marxianus. Renewable Energy, 138, 1127–1133. https://doi.org/10.1016/j.renene.2019.02.058

Láinez, M., Ruiz, H. A., Castro-Luna, A. A., & Martínez-Hernández, S. (2018). Release of simple sugars from lignocellulosic biomass of Agave salmiana leaves subject to sequential pretreatment and enzymatic saccharification. Biomass and Bioenergy, 118(September), 133–140. https://doi.org/10.1016/j.biombioe.2018.08.012

Lee, M., Cho, S., & Kim, J. (2017). A comprehensive model for design and analysis of bioethanol production and supply strategies from lignocellulosic biomass. Renewable Energy, 112, 247–259. https://doi.org/10.1016/j.renene.2017.05.040

Li, J., Zhang, M., & Wang, D. (2019). High-solids hydrolysis of corn stover to achieve high sugar yield and concentration through high xylan recovery from magnesium oxide-ethanol pretreatment. Bioresource Technology, 280(January), 352–359. https://doi.org/10.1016/j.biortech.2019.02.058

Medina-Morales, M. A., Contreras-Esquivel, J. C., De la Garza-Toledo, H., Rodriguez, R., & Aguilar, C. N. (2011). Enzymatic bioconversion of agave leaves fiberhydrolysis using plackett-burman design. American Journal of Agricultural and Biological Science, 6(4), 480–485. https://doi.org/10.3844/ajabssp.2011.480.485

Michel-Cuello, C., Juárez-Flores, B. I., Aguirre-Rivera, J. R., & Pinos-Rodríguez, J. M. (2008). Quantitative characterization of nonstructural carbohydrates of mezcal agave (Agave salmiana Otto ex Salm-Dick). Journal of Agricultural and Food Chemistry, 56(14), 5753–5757. https://doi.org/10.1021/jf800158p

Michel-Cuello, C., Ortiz-Cerda, I., Moreno-Vilet, L., Grajales-Lagunes, A., Moscosa-Santillán, M., Bonnin, J., González-Chávez, M. M., & Ruiz- Cabrera, M. (2012). Study of enzymatic hydrolysis of fructans from Agave salmiana characterization and kinetic assessment. The Scientific World Journal, 2012. https://doi.org/10.1100/2012/863432

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030

Naranjo, C. D. D., Alamilla-beltrán, L., Gutiérrez-lopez, G. F., Terres-rojas, E., & Solorza-, J. (2016). Aislamiento y caracterización de celulosas obtenidas de fibras de Agave salmiana aplicando dos métodos de extracción ácido-alcali * Isolation and characterization of cellulose obtained from Agave salmiana fibers using two acid-alkali extraction methods Re. Revista Mexicana de Ciencias Agrícolas, 7(1), 31–43.

Nielsen, S. S. (2003). Phenol-Sulfuric Acid Method for Total Carbohydrates. 39–44. https://doi.org/10.1007/978-1-4757-5250-2_6

Pinos-Rodríguez, J. M., Zamudio, M., & González, S. S. (2008). The effect of plant age on the chemical composition of fresh and ensiled Agave salmiana leaves. South African Journal of Animal Sciences, 38(1), 43–50. https://doi.org/10.4314/sajas.v38i1.4108

Rijal, D., Vancov, T., McIntosh, S., Ashwath, N., & Stanley, G. A. (2016). Process options for conversion of Agave tequilana leaves into bioethanol. Industrial Crops and Products, 84, 263–272. https://doi.org/10.1016/j.indcrop.2016.02.011

Ríos-González, L. J., Medina-Morales, M. A., Rodríguez-De la Garza, J. A., Romero-Galarza, A., Medina, D. D., & Morales-Martínez, T. K. (2021). Comparison of dilute acid pretreatment of agave assisted by microwave versus ultrasound to enhance enzymatic hydrolysis. Bioresource Technology, 319(July 2020), 124099. https://doi.org/10.1016/j.biortech.2020.124099

Sandoval-Nuñez, D., Arellano-Plaza, M., Gschaedler, A., Arrizon, J., & Amaya-Delgado, L. (2018). A comparative study of lignocellulosic ethanol productivities by Kluyveromyces marxianus and Saccharomyces cerevisiae. Clean Technologies and Environmental Policy, 20(7), 1491–1499. https://doi.org/10.1007/s10098-017-1470-6

Saucedo-Luna, J., Castro-Montoya, A. J., Rico, J. L., & Campos-García, J. (2010). Optimización de hidrólisis ácida de bagaso de Agave tequilana Weber. Revista Mexicana de Ingeniera Qumica, 9(1), 91–97.

Saucedo-Luna, Jaime, Castro-Montoya, A. J., Martinez-Pacheco, M. M., Sosa-Aguirre, C. R., & Campos-Garcia, J. (2011). Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. Journal of Industrial Microbiology and Biotechnology, 38(6), 725–732. https://doi.org/10.1007/s10295-010-0853-z

Sudiyani, Y., Styarini, D., Triwahyuni, E., Sudiyarmanto, Sembiring, K. C., Aristiawan, Y., Abimanyu, H., & Han, M. H. (2013). Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot - Scale unit. Energy Procedia, 32, 31–38. https://doi.org/10.1016/j.egypro.2013.05.005

Villegas-Silva, P. A., Toledano-Thompson, T., Canto-Canché, B. B., Larqué-Saavedra, A., & Barahona-Pérez, L. F. (2014). Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production. BMC Biotechnology, 14(130). https://doi.org/10.1186/1472-6750-14-14

Viniegra-gonzález, G. (2021). Agave bioindustries : history and future of a strategic bioresource. 1(1), 12–24.

Visioli, L. J., Stringhini, F. M., Salbego, P. R. S., Chielle, D. P., Ribeiro, G. V., Gasparotto, J. M., Aita, B. C., Klaic, R., Moscon, J. M., & Mazutti, M. A. (2014). Use of Agroindustrial Residues for Bioethanol Production. Bioenergy Research: Advances and Applications, 49–56. https://doi.org/10.1016/B978-0-444-59561-4.00003-6

Xu, C., Zhang, J., Zhang, Y., Guo, Y., Xu, H., Xu, J., & Wang, Z. (2019). Enhancement of high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse at low cellulase dosage by fed-batch strategy based on optimized accessory enzymes and additives. Bioresource Technology, 292(August), 121993. https://doi.org/10.1016/j.biortech.2019.121993

Yan, X., Corbin, K. R., Burton, R. A., & Tan, D. K. Y. (2020). Agave: A promising feedstock for biofuels in the water-energy-food-environment (WEFE) nexus. Journal of Cleaner Production, 261, 121283. https://doi.org/10.1016/j.jclepro.2020.121283

Yang, L., Lu, M., Carl, S., Mayer, J. A., Cushman, J. C., Tian, E., & Lin, H. (2015). Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass and Bioenergy, 76, 43–53. https://doi.org/10.1016/j.biombioe.2015.03.004

Downloads

Published

2021-06-10

How to Cite

Martínez-Hernández, S., Hernández-Mendoza, A. G., Ruiz-Leza, H. A., Ortiz-Ceballos, A. I., Castro-Luna, A. A., & Láinez-González, M. (2021). Evaluation of acid-thermal pretreatments and enzymatic saccharification to obtain fermentable sugars from the juice and bagasse of Agave salmiana leaves. Renewable Energy, Biomass & Sustainability, 3(1), 67–74. https://doi.org/10.56845/rebs.v3i1.39

Issue

Section

Original Articles