Evaluación preliminar del potencial coagulante de Moringa oleifera en distintas presentaciones para el tratamiento de aguas residuales de lavandería

Descargas: 33

Autores/as

  • Grecia A. Ortega-Hernandez Centro de Investigaciones en Calidad Ambiental, Centro Universitario de la Ciénega, Universidad de Guadalajara
  • Anderson A. Ramírez-Ramírez Centro de Investigaciones en Calidad Ambiental, Centro Universitario de la Ciénega, Universidad de Guadalajara https://orcid.org/0000-0003-2852-0000
  • Allan Tejeda Centro de Investigaciones en Calidad Ambiental, Centro Universitario de la Ciénega, Universidad de Guadalajara https://orcid.org/0000-0002-2214-2056
  • Florentina Zurita-Martínez Centro de Investigaciones en Calidad Ambiental, Centro Universitario de la Ciénega, Universidad de Guadalajara https://orcid.org/0000-0003-4681-9081

DOI:

https://doi.org/10.56845/terys.v4i3.503

Palabras clave:

aguas residuales de lavandería, Moringa oleifera, color, turbidez, coagulación-floculación

Resumen

En este estudio preliminar se evaluó el uso de semillas de Moringa oleifera como coagulante natural para el tratamiento de ARL, con el objetivo de determinar el método de preparación más efectivo y la dosis óptima para este tipo de efluente. Se analizaron tres formas de preparación del coagulante: en polvo sin desengrasar, desengrasado y disuelto en solución salina (NaCl 0.250 M al 5 %). Los mejores resultados de remoción de color aparente (CA) y turbidez se obtuvieron con dosis de 1 g/L (78.8 % CA y 83.86 % turbidez), 0.5 g/L (84.35 % CA y 85.16 % turbidez) y 50 mL/L (92.62 % CA y 93.74 % turbidez), respectivamente. Estos resultados indican que la preparación más efectiva fue el coagulante sin desengrasar disuelto en solución salina, al menos para los parámetros evaluados. Los hallazgos demuestran que el coagulante a partir de las semillas de Moringa oleifera representa una alternativa eficiente y sostenible para el tratamiento de aguas residuales de lavandería. Sin embargo, se requiere profundizar en la eficiencia del proceso para la remoción de otros contaminantes presentes en este efluente, así como el estudio de los factores que afectan su eficiencia.

Citas

Ahmed, H.M., El-Khateeb, M.A., Mohamed, N.Y., Sobhy, N.A., & Fawzy, M. E. (2024). Evaluation of different natural waste materials as bio-coagulants for domestic wastewater treatment. Desalination and Water Treatment, 317, 100034, https://doi.org/10.1016/j.chemosphere.2022.137662.

Al-Gheethi, A., Mohamed, R., Wurochekke, A., Nurulainee, N., Mas Rahayu, J., & Amir Hashim, M. (2017). Efficiency of Moringa oleifera Seeds for Treatment of Laundry Wastewater. MATEC Web Conf., 103, 06001, https://doi.org/10.1051/matecconf/201710306001.

Al-Jadabi, N., Laaouan, M., El Hajjaji, S., Mabrouki, J., Benbouzid, M., & Dhiba, D. (2023). The dual performance of Moringa oleifera seeds as eco-friendly natural coagulant and as an antimicrobial for wastewater treatment: a review. Sustainability, 15(5), 4280, https://doi.org/10.3390/su15054280.

APHA; AWWA; WEF. (2005). Standard Methods for the Examination of Water and Wastewater (24th ed.). American Public Health Association Wastewater. https://www.wef.org/publications/publications/books/StandardMethods/.

Baihaqi, R. A., Prabahandari, K. A., Hariyono, Y., Pratiwi, N. I., Sutanto, H., & Wahyono, Y. (2022). Application of anaerobic and aerobic bioreactors in detergent wastewater treatment: A review. IOP Conference Series Earth and Environmental Science, 1098(1), 012034. https://doi.org/10.1088/1755-1315/1098/1/012034.

Dadebo, D., Obura, D., & Atukunda, A. (2024). Phytoremediation of laundry wastewater using Pistia stratiotes and recycling of spent plant biomass for sustainable biomethane production. Bioresource Technology Reports, 26, 101855, https://doi.org/10.1016/j.biteb.2024.101855

Desta, W. M., & Bote, M. E. (2021). Wastewater treatment using a natural coagulant (Moringa oleifera seeds): optimization through response surface methodology. Heliyon, 7(11), https://doi.org/10.1016/j.heliyon.2021.e08451.

Esteban García, A. B., Szymański, K., Mozia, S., & Sánchez Pérez, J. A. (2021). Treatment of laundry wastewater by solar photo-Fenton process at pilot plant scale. Environmental Science and Pollution Research, 28, 8576-8584, https://doi.org/10.1007/s11356-020-11151-x.

Kitte, S. A., Dressa, S., Endale, H., & Dadi, D. (2019). Removal of anionic surfactant from residential laundry wastewater using jackfruit (Artocarpus heterophyllus) seeds. Advances in Environmental Technology, 5(1), 47-53, https://doi.org/10.22104/aet.2020.3841.1189.

Luogo, B. D. P., Salim, T., Zhang, W., Hartmann, N. B., Malpei, F., & Candelario, V. M. (2022). Reuse of water in laundry applications with micro-and ultrafiltration ceramic membrane. Membranes, 12(2), 223, https://doi.org/10.3390/membranes12020223.

López-Grimau, V., Vilaseca, M., & Gutiérrez-Bouzán, C. (2016). Comparison of different wastewater treatments for colour removal of reactive dye baths. Desalination and water treatment, 57(6), 2685-2692, https://doi.org/10.1080/19443994.2015.1031185.

Mejía, C., Urquia, C., Cabello, T., & Valdiviezo, G. (2020). Evaluation of Moringa oleífera in the water treatment with high turbidity and organic. Ingeniería del agua, 24(2), 119-127, https://doi.org/10.4995/ia.2020.12274.

Melián, E. P., Santiago, D. E., León, E., Reboso, J. V., & Herrera-Melián, J. A. (2023). Treatment of laundry wastewater by different processes: Optimization and life cycle assessment. Journal of Environmental Chemical Engineering, 11(2), 109302, https://doi.org/10.1016/j.jece.2023.109302.

Murali, A., Hillstead, K. D., Wrobel, B. S., Thomas, D. J., Gonety, R., & Tarabara, V. V. (2022). Moringa oleifera-derived coagulants for water treatment: Floc structure, residual organics, and performance trade-offs. Environmental Science and Pollution Research, 29(16), 24381-24389, https://doi.org/10.1007/s11356-022-19071-8.

Nascimento, C. O., Veit, M. T., Palácio, S. M., Gonçalves, G. C., & Fagundes-Klen, M. R. (2019). Combined application of coagulation/flocculation/sedimentation and membrane separation for the treatment of laundry wastewater. International Journal of Chemical Engineering, 2019(1), 8324710, https://doi.org/10.1155/2019/8324710.

Nasir, F. N., & Titah, H. S. (2024). The use of granular activated carbon and zeolite as an adsorbent to reduce the concentration of phosphate, chemical oxygen demand and total suspended solid in laundry wastewater. Journal of Ecological Engineering, 25(4), 170-183, https://doi.org/10.12911/22998993/184089.

Prasad, R. K. (2009). Color removal from distillery spent wash through coagulation using Moringa oleifera seeds: Use of optimum response surface methodology. Journal of hazardous materials, 165(1-3), 804-811, https://doi.org/10.1016/j.jhazmat.2008.10.068.

Rifi, S. K., Souabi, S., El Fels, L., Driouich, A., Nassri, I., Haddaji, C., & Hafidi, M. (2022). Optimization of coagulation process for treatment of olive oil mill wastewater using Moringa oleifera as a natural coagulant, CCD combined with RSM for treatment optimization. Process Safety and Environmental Protection, 162, 406-418, https://doi.org/10.1016/j.psep.2022.04.010.

Saravanan, A., Thamarai, P., Deivayanai, V., Karishma, S., Shaji, A., & Yaashikaa, P. (2024). Current strategies on bioremediation of personal care products and detergents: Sustainability and life cycle assessment. Chemosphere, 354, 141698, https://doi.org/10.1016/j.chemosphere.2024.141698.

Shan, T. C., Matar, M. A., Makky, E. A., & Ali, E. N. (2017). The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal. Applied Water Science, 7, 1369-1376, https://doi.org/10.1007/s13201-016-0499-8.

Sinaga, M., Astuti, S., & Gultom, E. (2020). Degradation of phospate in laundry waste with biosand filter method. I IOP Conference Series Materials Science and Engineering, 801(1), 012067. https://doi.org/10.1088/1757-899x/801/1/012067.

Tomasi, I. T., Ferreira, R. M., Boaventura, R. A., & Botelho, C. M. (2025). Natural coagulants from chestnut shells: A sustainable approach for textile wastewater treatment. Chemosphere, 376, 144286, https://doi.org/10.1016/j.chemosphere.2025.144286.

Vishali, S., Poonguzhali, E., Banerjee, I., George, S. S., & Srinivasan, P. (2023). Purification of domestic laundry wastewater in an integrated treatment system consists of coagulation and ultrafiltration membrane process. Chemosphere, 314, 137662, https://doi.org/10.1016/j.chemosphere.2022.137662.

Yaranal, N. A., Kuchibhotla, S. A., Subbiah, S., & Mohanty, K. (2023). Identification, removal of microplastics and surfactants from laundry wastewater using electrocoagulation method. Water Emerging Contaminants & Nanoplastics, 3(1), https://dx.doi.org/10.20517/wecn.2023.46.

Zurita, F., Tejeda, A., Ramirez-Ramirez, A., & Montoya, A. (2024). Integration of Coagulation–flocculation (with Natural Coagulant) to Constructed Wetlands for Color Removal from Tequila Vinasses. Water, 16(21), 3151, https://doi.org/10.3390/w16213151.

Descargas

Publicado

2025-12-24

Cómo citar

Ortega-Hernandez, G. A., Ramírez-Ramírez , A. A., Tejeda, A., & Zurita-Martínez, F. (2025). Evaluación preliminar del potencial coagulante de Moringa oleifera en distintas presentaciones para el tratamiento de aguas residuales de lavandería. Tendencias En energías Renovables Y Sustentabilidad, 4(3), 108–114. https://doi.org/10.56845/terys.v4i3.503

Número

Sección

Artículos Científicos