Análisis numérico CFD del proceso de combustión de una estufa eficiente de biomasa: eficiencia global, rendimiento térmico y emisiones de CO2e
DOI:
https://doi.org/10.56845/terys.v4i3.459Palabras clave:
estufa Tuya, CFD, eficiencia, emisiones, combustiónResumen
En este trabajo se evalúa el rendimiento de una estufa eficiente de biomasa (IBS) tipo plancha utilizando un modelo de combustión de 6 reacciones para comparar los resultados numéricos con mediciones experimentales de la IBS modelo Tuya. La estufa de biomasa se evaluó mediante una prueba con tres repeticiones (Pruebas 1, 2 y 3) de 40 min cada una, 10 minutos de estabilización y 30 minutos de funcionamiento de la estufa. Se utilizó el software ANSYS Fluent para simular los principales fenómenos de transporte de la estufa de biomasa. En las simulaciones numéricas fueron configurados dos escenarios: TY_6R_L2 y TY_6R_L3 utilizando un coeficiente de exceso de aire (λ) igual a 2 y 3, respectivamente, en las 3 pruebas de rendimiento. En general, los resultados de la comparación de los casos numéricos muestran que λ tiene un efecto significativo en la mejora tanto de la transferencia de calor como del proceso de combustión de la IBS Tuya. En el caso de las emisiones de CO2e se obtuvieron diferencias del 35 y 19% para los casos numéricos TY_6R_L2 y TY_6R_L3, respectivamente, comparados con el valor experimental de 0.68 ± 0.13 kgCO2e/kg.
Citas
Armendáriz-Arnez, C., Edwards, R. D., Johnson, M., Rosas, I. A., Espinosa, F., & Masera, O. R. (2010). Indoor particle size distributions in homes with open fires and improved Patsari cook stoves. Atmospheric Environment, 44(24), 2881–2886. https://doi.org/10.1016/j.atmosenv.2010.04.049
Bailis, R., Drigo, R., Ghilardi, A., & Masera, O. (2015). The carbon footprint of traditional woodfuels. Nature Climate Change, 5(3), 266–272. https://doi.org/10.1038/nclimate2491
Berrueta, V. M., Edwards, R. D., & Masera, O. R. (2008). Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy, 33(5), 859–870. https://doi.org/10.1016/j.renene.2007.04.016
Chen, T., Li, T., Sjöblom, J., & Ström, H. (2021). A reactor-scale CFD model of soot formation during high-temperature pyrolysis and gasification of biomass. Fuel, 303, 121240. https://doi.org/10.1016/j.fuel.2021.121240
Cruz Montelongo, C. D. L., Herrera Gamboa, J., Ortiz Sánchez, I. A., Ríos Saucedo, J. C., Rosales Serna, R., & Carrillo-Parra, A. (2020). Energy characterization of charcoal produced in North Central México. Madera y bosques, 26(2). https://doi.org/10.21829/myb.2020.2621971
De Jong, W., & Van Ommen, J. R. (2014). Biomass as a sustainable energy source for the future: fundamentals of conversion processes. John Wiley & Sons.
FAO. (s.f.) Capítulo 1. LOGISTICA DE UNA PRODUCCION DE CARBON VEGETAL. https://www.fao.org/4/x5328s/X5328S02.htm#:~:text=Se%20supone%20que%20la%20eficiencia,de%20madera%20seca%20al%20horno. Acceso: 1 de mayo de 2025.
Filipe dos Santos Viana, H., Martins Rodrigues, A., Godina, R., Carlos de Oliveira Matias, J., & Jorge Ribeiro Nunes, L. (2018). Evaluation of the physical, chemical and thermal properties of Portuguese maritime pine biomass. Sustainability, 10(8), 2877. https://doi.org/10.3390/su10082877
Galindo, Y., Gómez-Heleria, D., González, J. N., & Bustamante, C. A. (2025). CFD simulation and implementation of a griddle-type biomass stove for rural communities. Revista Mexicana de Física, 71(1 Jan-Feb), 010602-1. https://doi.org/10.31349/RevMexFis.71.010602
GLOBAL BIOENERGY STATISTICS 2023. GLOBAL BIOENERGY STATISTICS 2023. https://www.worldbioenergy.org/uploads/231219%20GBS%20Report.pdf Acceso: 9 de abril de 2025.
Gómez-Heleria, D., Núñez, J., Fisher, E. M., Ruiz-García, V. M., & Beltrán, A. (2023). Steady-state behavior of a biomass plancha-type cookstove: Experimental and 3D numerical study. Sustainable Energy Technologies and Assessments, 57, 103172. https://doi.org/10.1016/j.seta.2023.103172
Grieshop, A. P., Marshall, J. D., & Kandlikar, M. (2011). Health and climate benefits of cookstove replacement options. Energy Policy, 39(12), 7530–7542. https://doi.org/10.1016/j.enpol.2011.03.024
Intergovernmental Panel on Climate Change. (2014). Climate Change 2014, Technical Report. https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf Acceso: 1 de mayo de 2025.
IPCC. (2007). Climate Change 2007: Synthesis Report. Geneva, Switzerland. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_sp.pdf Acceso: 1 de mayo de 2025.
Jetter, J., Zhao, Y., Smith, K. R., Khan, B., Yelverton, T., DeCarlo, P., & Hays, M. D. (2012). Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environmental science & technology, 46(19), 10827–10834. https://doi.org/10.1021/es301693f
Jobaidur, K., & Ting, W. (2013). Implementation of a demoisturization and devolatilization model in multi-phase simulation of a hybrid entrained-flow and fluidized bed mild gasifier. International Journal of Clean Coal and Energy, 2013. http://dx.doi.org/10.4236/ijcce.2013.23005
Johnson, M., Edwards, R., Berrueta, V., & Masera, O. (2010). New approaches to performance testing of improved cookstoves. Environmental science & technology, 44(1), 368–374. https://doi.org/10.1021/es9013294
Johnson, M., Edwards, R., Frenk, C. A., & Masera, O. (2008). In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmospheric Environment, 42(6), 1206–1222. https://doi.org/10.1016/j.atmosenv.2007.10.034
Kang, M. S., Jeong, H. J., Farid, M. M., & Hwang, J. (2017). Effect of staged combustion on low NOx emission from an industrial-scale fuel oil combustor in South Korea. Fuel, 210, 282–289. https://doi.org/10.1016/j.fuel.2017.08.065
Koppejan, J., & Van Loo, S. (2012). The handbook of biomass combustion and co-firing. Routledge.
Kumar, U., & Paul, M. C. (2019). CFD modelling of biomass gasification with a volatile break-up approach. Chemical Engineering Science, 195, 413–422. https://doi.org/10.1016/j.ces.2018.09.038
Lammel, G., & Graßl, H. (1995). Greenhouse effect of NOX. Environmental Science and Pollution Research, 2, 40–45. https://doi.org/10.1007/BF02987512
Lee, H. K., Choi, S. M., & Kim, B. K. (2010). Understanding coal gasification and combustion modeling in general purpose CFD code. Journal of the Korean Society of Combustion, 15(3), 15–24. https://koreascience.kr/ksci/search/article/articleView.ksci?articleBean.atclMgntNo=OSHHB6_2010_v15n3_15
Liu, H., Cattolica, R. J., & Seiser, R. (2016). CFD studies on biomass gasification in a pilot-scale dual fluidized-bed system. International Journal of Hydrogen Energy, 41(28), 11974–11989. https://doi.org/10.1016/j.ijhydene.2016.04.205
MacCarty, N., Ogle, D., Still, D., Bond, T., & Roden, C. (2008). A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy for sustainable development, 12(2), 56–65. https://doi.org/10.1016/S0973-0826(08)60429-9
Marangwanda, G. T., Madyira, D. M., & Babarinde, T. O. (2020). Combustion models for biomass: A review. Energy Reports, 6, 664–672. https://doi.org/10.1016/j.egyr.2019.11.135
Medina, P. (2017). Evaluación de la contribución de emisiones y de los parámetros de rendimiento de las estufas eficientes de leña mediante los protocolos WBT/CCT y durante ciclos de cocinado controlado. Universidad Michoacana de San Nicolás de Hidalgo, Posgrado de Ingeniería Química. Tesis de Doctorado. http://bibliotecavirtual.dgb.umich.mx:8083/jspui/bitstream/DGB_UMICH/5718/1/FIQ-D-2017-0397.pdf
Medina, P., Beltrán, A., Núñez, J., & Ruiz-García, V. M. (2022). Transport phenomena in a biomass plancha-type cookstove: Experimental performance and numerical simulations. Energy for Sustainable Development, 71, 132–140. https://doi.org/10.1016/j.esd.2022.09.019
Medina, P., Mora, A., & Beltrán, A. (2024). Combustion efficiency and CO/NOX emissions for a biomass plancha-type stove: Effect of the air excess ratio. Thermal Science and Engineering Progress, 48, 102411. https://doi.org/10.1016/j.tsep.2024.102411
Medina, P., Mora, A., & Beltrán, A. (2025). Improvement of the combustion model for a biomass stove: analysis of overall efficiency and thermal performance. Submitted to Renewable Energy, 13th April 2025. Manuscript number: RENE-D-25-04656. https://track.authorhub.elsevier.com/?uuid=73f4728a-baeb-47b2-b2ec-803095c5ffbe
Medina, P., Núñez, J., Ruiz-García, V. M., & Beltrán, A. (2021). Experimental and numerical comparison of CO₂ mass flow rate emissions, combustion and thermal performance for a biomass plancha-type cookstove. Energy for Sustainable Development, 63, 153–159. https://doi.org/10.1016/j.esd.2021.07.001
Núñez, J., Moctezuma-Sánchez, M. F., Fisher, E. M., Berrueta, V. M., Masera, O. R., & Beltrán, A. (2020). Natural-draft flow and heat transfer in a plancha-type biomass cookstove. Renewable Energy, 146, 727–736. https://doi.org/10.1016/j.renene.2019.07.007
Patange, O. S., Ramanathan, N., Rehman, I. H., Tripathi, S. N., Misra, A., Kar, A., ... & Ramanathan, V. (2015). Reductions in indoor black carbon concentrations from improved biomass stoves in rural India. Environmental science & technology, 49(7), 4749–4756. https://doi.org/10.1021/es506208x
Pérez, G., Islas-Samperio, J. M., Grande-Acosta, G. K., & Manzini, F. (2022). Socioeconomic and environmental aspects of traditional firewood for cooking on the example of rural and peri-urban Mexican households. Energies, 15(13), 4904. https://doi.org/10.3390/en15134904
Ruiz-Garcia, V., Medina, P., Vázquez, J., Villanueva, D., Ramos, S., & Masera, O. (2021). Bioenergy devices: energy and emissions performance for the residential and industrial sectors in Mexico. BioEnergy Research, 1–13. https://doi.org/10.1007/s12155-021-10362-5
Sadaka, S., & Johnson, D. M. (2011). Biomass Combustion. Cooperative Extension Service, University of Arkansas. US Department of Agriculture and county governments cooperating. https://www.researchgate.net/publication/278965157_Biomass_Combustion
Serrano-Medrano, M., García-Bustamante, C., Berrueta, V. M., Martínez-Bravo, R., Ruiz-García, V. M., Ghilardi, A., & Masera, O. (2018). Promoting LPG, clean woodburning cookstoves or both? Climate change mitigation implications of integrated household energy transition scenarios in rural Mexico. Environmental Research Letters, 13(11), 115004. https://doi.org/10.1088/1748-9326/aad5b8
Somwangthanaroj, S., & Fukuda, S. (2020). CFD modeling of biomass grate combustion using a steady-state discrete particle model (DPM) approach. Renewable Energy, 148, 363–373. https://doi.org/10.1016/j.renene.2019.10.042
Su, X., Ma, L., Fang, Q., Yin, C., Zhuang, H., Qiao, Y., ... & Chen, G. (2024). Optimizing biomass combustion in a 130 t/h grate boiler: Assessing gas-phase reaction models and primary air distribution strategies. Applied Thermal Engineering, 238, 122043. https://doi.org/10.1016/j.applthermaleng.2023.122043
Tu, Y., Xu, M., Zhou, D., Wang, Q., Yang, W., & Liu, H. (2019). CFD and kinetic modelling study of methane MILD combustion in O₂/N₂, O₂/CO₂ and O₂/H₂O atmospheres. Applied energy, 240, 1003–1013. https://doi.org/10.1016/j.apenergy.2019.02.046
Yang, M., Zhong, S., Xu, S., Xu, L., Ottosson, P., Fatehi, H., & Bai, X. S. (2023). CFD Simulation of Biomass Combustion in an Industrial Circulating Fluidized Bed Furnace. Combustion Science and Technology, 195(14), 3310–3340. https://doi.org/10.1080/00102202.2023.2260553
Zadravec, T., Rajh, B., Kokalj, F., & Samec, N. (2020). CFD modelling of air staged combustion in a wood pellet boiler using the coupled modelling approach. Thermal Science and Engineering Progress, 20, 100715. https://doi.org/10.1016/j.tsep.2020.100715
Zeng, K., Minh, D. P., Gauthier, D., Weiss-Hortala, E., Nzihou, A., & Flamant, G. (2015). The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood. Bioresource technology, 182, 114–119. https://doi.org/10.1016/j.biortech.2015.01.112
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Paulo C. Medina Mendoza, Alberto Beltrán Morales, Wenceslao C. Bonilla Blancas, Martín Salazar Pereyra

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor © D.R. Asociación Latinoamericana de Desarrollo Sustentable y Energías Renovables A. C.,