Implementación de un tratamiento biológico para efluentes de rastros en zonas rurales
DOI:
https://doi.org/10.56845/terys.v2i1.384Palabras clave:
tratamiento biológico, reactor anaerobio, efluente de rastro, biogásResumen
Los efluentes de rastros son una fuente muy importante de contaminación al medio ambiente, específicamente en comunidades rurales en donde no existen tratamientos adecuados y son vertidos en arroyos, contaminando también las aguas subterráneas. Es de gran importancia estudiar alternativas de fácil implementación para remover los contaminantes de estos efluentes con la finalidad de mitigar los impactos ambientales y los daños a la salud. En este proyecto se implementó un reactor anaerobio de biopelícula fija para evaluar la remoción de contaminantes presentes en este tipo de efluentes, evaluando el periodo de estabilización y tres cargas orgánicas diferentes. Se alcanzaron tasas de remoción de hasta el83.69, 91.81, 87 y 92 % para DQO, DQOS, ST y SV, respectivamente, con una remoción media del 32 % para Nitrógeno Total y la producción debiogás superó los 300 L/h.. Gracias a la configuración del sistema de biopelícula, el reactor tuvo buen desempeño incluso con la carga más alta, encontrando una opción biológica viable para su aplicación en comunidades con presupuestos limitados.Citas
Ahring, B.K. (Ed.), 2003. Biomethanation I Series: Advances in Biochemical Engineering Biotechnology, vol. 81. Springer. ISBN 978-3-540-44322-3. Aziz, A., Basheer, F., Sengar, A., Khan, S. U., & Farooqi, I. H. (2019). Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Science of the total environment, 686, 681-708.
https://doi.org/10.1016/j.scitotenv.2019.05.295
Baker, B. R., Mohamed, R., Al-Gheethi, A., & Aziz, H. A. (2021). Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review. Journal of Dispersion Science and Technology, 42(6), 880-899. https://doi.org/10.1080/01932691.2020.1721007
Bayr, S., Rantanen, M., Kaparaju, P., & Rintala, J. (2012). Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes. Bioresource technology, 104, 28-36. https://doi.org/10.1016/j.biortech.2011.09.104
Bustillo-Lecompte, C., Mehrvar, M., & Quiñones-Bolaños, E. (2016). Slaughterhouse wastewater characterization and treatment: an economic and public health necessity of the meat processing industry in Ontario, Canada. Journal of Geoscience and Environment Protection, 4(4), 175-186. https://doi.org/10.4236/gep.2016.44021
Castellucci, S., Cocchi, S., Allegrini, E., & Vecchione, L. (2013). Anaerobic digestion and co-digestion of slaughterhouse wastes. Journal of Agricultural Engineering, 44(s2). https://doi.org/10.4081/jae.2013.346
CONAGUA, 2020. Programa Nacional Hídrico 2020-2024. Disponible en: https://www.dof.gob.mx/nota_detalle.php?codigo=5609188&fecha=30/12/2020#gsc.tab=0 (Acceso: 01 June 2023).
Escalante-Estrada, V. E., Garzón-Zúñiga, M. A., Valle-Cervantes, S., & Páez-Lerma, J. B. (2019). Swine wastewater treatment for small farms by a new anaerobic-aerobic biofiltration technology. Water, Air, & Soil Pollution, 230, 1-15. https://doi.org/10.1007/s11270-019-4200-3
Fu, Y., Luo, T., Mei, Z., Li, J., Qiu, K., & Ge, Y. (2018). Dry anaerobic digestion technologies for agricultural straw and acceptability in China.
Sustainability, 10(12), 4588. https://doi.org/10.3390/su10124588
Gannoun, H., Bouallagui, H., Okbi, A., Sayadi, S., & Hamdi, M. (2009). Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter. Journal of hazardous materials, 170(1), 263-271. https://doi.org/10.1016/j.jhazmat.2009.04.111
Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of food science and technology, 49(3), 278-293. https://doi.org/10.1007/s13197-011-0290-7
Karadag, D., Köroğlu, O. E., Ozkaya, B., & Cakmakci, M. (2015). A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochemistry, 50(2), 262-271. https://doi.org/10.1016/j.procbio.2014.11.005
Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Nagy, K., Minárovits, J., ... & Kovács, K. L. (2015). Augmented biogas production from protein-rich substrates and associated metagenomic changes. Bioresource Technology, 178, 254-261.
https://doi.org/10.1016/j.biortech.2014.08.111
León-Becerril, E., García-Camacho, J. E., Del Real-Olvera, J., & López-López, A. (2016). Performance of an upflow anaerobic filter in the treatment of cold meat industry wastewater. Process Safety and Environmental Protection, 102, 385-391.
https://doi.org/10.1016/j.psep.2016.04.016
Majhi, B. K., & Jash, T. (2016). Two-phase anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor. Waste management, 58, 152-159.
https://doi.org/10.1016/j.wasman.2016.09.009
Musa, M. A., & Idrus, S. (2021). Physical and biological treatment technologies of slaughterhouse wastewater: A review. Sustainability, 13(9), 4656. https://doi.org/10.3390/su13094656
Palomares-Rodríguez, C., Martínez-Guido, S. I., Apolinar-Cortés, J., del Carmen Chávez-Parga, M., García-Castillo, C. C., & Ponce-Ortega, J. M. (2017). Environmental, technical, and economic evaluation of a new treatment for wastewater from slaughterhouses. International Journal of Environmental Research, 11, 535-545. https://doi.org/10.1007/s41742-017-0047-x
Pozo, R. D., Taş, D. O., Dulkadiroğlu, H., Orhon, D., & Diez, V. (2003). Biodegradability of slaughterhouse wastewater with high blood content under anaerobic and aerobic conditions. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 78(4), 384-391. https://doi.org/10.1002/jctb.753
Rajakumar, R., & Meenambal, T. (2008). Comparative Study on Start–Up Performance of HUASB and AF Reactors Treating Poultry Slaughterhouse Wastewater. Int. J. Environ. Res, 2(4), 401-410. https://doi.org/10.22059/ijer.2010.221
Rincon, A., Angulo Garcia, F., & Olivar Tost, G. (2009). Analysis and control of an anaerobic upflow fixed bed bioreactor. Dyna, 76(157), 123-132. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532009000100012&lng=en&nrm=iso. ISSN 0012-7353. (Accessed: june 12, 2023)
Rodríguez, R. V., & VALDEZ, J. G. (2019). Manejo integral de efluentes residuales generados en los rastros municipales. R. Ramírez Rodríguez, J Gallardo Valdez. Manejo integral de efluentes residuales generados en los rastros municipales. CIATEJ ISBN: 978-607-8734-06-1. Avaliable on https://ciatej.repositorioinstitucional.mx/jspui/handle/1023/683 (accessed: april 01, 2023)
Shende, A. D., Dhenkula, S., Rao, N. N., & Pophali, G. R. (2022). An improved primary wastewater treatment system for a slaughterhouse industry: a full-scale experience. Water Science and Technology, 85(5), 1688-1700. https://doi.org/10.2166/wst.2022.041
Sunder, G. C., & Satyanarayan, S. (2013). Efficient treatment of slaughter house wastewater by anaerobic hybrid reactor packed with special floating media. International Journal of Chemical and Physical Sciences, 2, 73-81. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f73fc32a89e02ef62c5476e94f803539a0582068 (Accessed: june 12, 2023)
Vidal, J., Huiliñir, C., & Salazar, R. (2016). Removal of organic matter contained in slaughterhouse wastewater using a combination of anaerobic digestion and solar photoelectro-Fenton processes. Electrochimica Acta, 210, 163-170. https://doi.org/10.1016/j.electacta.2016.05.064
Wang, S., Hawkins, G. L., Kiepper, B. H., & Das, K. C. (2018). Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production. Renewable Energy, 126, 552-562. https://doi.org/10.1016/j.renene.2018.03.076
Zuo, Z., Wu, S., Zhang, W., & Dong, R. (2013). Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Bioresource technology, 146, 556-561. https://doi.org/10.1016/j.biortech.2013.07.128
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Oscar Marín-Peña, Luis Carlos Sandoval-Herazo, Alejandro Alvarado-Lassman

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor © D.R. Asociación Latinoamericana de Desarrollo Sustentable y Energías Renovables A. C.,