Lirio acuático (Eichhornia crassipes): Retos para la producción de Bio-hidrógeno
DOI:
https://doi.org/10.56845/terys.v3i1.281Palabras clave:
Bio-hidrógeno, lirio acuático, biomasa, fermentación oscura, celdas de electrólisis microbianaResumen
El Bio-hidrógeno (Bio – H2) es un vector energético y una materia prima industrial que se puede obtener a partir del lirio acuático y que puede contribuir a reducir tanto su impacto negativo en ecosistemas como la dependencia de combustibles fósiles. El Bio – H2 se puede obtener por métodos como la fermentación oscura, y celdas de electrólisis microbiana por medio de diferentes fuentes de biomasa, donde las condiciones de operación y el rendimiento se ven afectados por el inóculo, el sustrato, el pH, la temperatura y la configuración del reactor. El artículo destaca algunas ventajas de la fermentación oscura y celdas de electrólisis microbiana, así como la utilización de materias primas renovables. Además, se señalan algunos desafíos para mejorar la eficiencia y la estabilidad de los procesos de producción del Bio – H2.
Citas
Ajithram, A., Jappes, J. T. W., & Brintha, N. C. (2021). Water hyacinth (Eichhornia crassipes) natural composite extraction methods and properties - A review. Materials Today: Proceedings, 45, 1626–1632. https://doi.org/10.1016/j.matpr.2020.08.472.
Anjanabha Bhattacharya, & Pawan Kumar. (2010). Water hyacinth as a potential biofuel crop. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(1), 112–122.
Bisht, M. S., Singh, M., Chakraborty, A., & Sharma, V. K. (2024). Genome of the most noxious weed water hyacinth (Eichhornia crassipes) provides insights into plant invasiveness and its translational potential. iScience, 27(9), 110698. https://doi.org/10.1016/j.isci.2024.110698.
Bora, A., Mohanrasu, K., Angelin Swetha, T., Ananthi, V., Sindhu, R., Chi, N. T. L., Pugazhendhi, A., Arun, A., & Mathimani, T. (2022). Microbial electrolysis cell (MEC): Reactor configurations, recent advances and strategies in biohydrogen production. Fuel, 328, 125269. https://doi.org/10.1016/j.fuel.2022.125269.
Borole, A. P., & Mielenz, J. R. (2011). Estimating hydrogen production potential in biorefineries using microbial electrolysis cell technology. International Journal of Hydrogen Energy, 36(22), 14787–14795. https://doi.org/10.1016/j.ijhydene.2011.03.152.
CABI. (2024). Eichhornia crassipes (water hyacinth). https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.20544.
Castelló, E., Nunes Ferraz-Junior, A. D., Andreani, C., Anzola-Rojas, M. del P., Borzacconi, L., Buitrón, G., Carrillo-Reyes, J., Gomes, S. D., Maintinguer, S. I., Moreno-Andrade, I., Palomo-Briones, R., Razo-Flores, E., Schiappacasse-Dasati, M., Tapia-Venegas, E., Valdez-Vázquez, I., Vesga-Baron, A., Zaiat, M., & Etchebehere, C. (2020). Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions. Renewable and Sustainable Energy Reviews, 119, 109602. https://doi.org/10.1016/j.rser.2019.109602.
Cui, W., Lu, Y., Zeng, C., Yao, J., Liu, G., Luo, H., & Zhang, R. (2021). Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages. Science of The Total Environment, 780, 146597. https://doi.org/10.1016/j.scitotenv.2021.146597.
Dahiya, S., Chatterjee, S., Sarkar, O., & Mohan, S. V. (2021). Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. En Bioresource Technology (Vol. 321). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2020.124354.
Dauptain, K., Schneider, A., Noguer, M., Fontanille, P., Escudie, R., Carrere, H., & Trably, E. (2021). Impact of microbial inoculum storage on dark fermentative H2 production. Bioresource Technology, 319, 124234. https://doi.org/10.1016/j.biortech.2020.124234.
Escapa, A., Gil-Carrera, L., García, V., & Morán, A. (2012). Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater. Bioresource Technology, 117, 55–62. https://doi.org/10.1016/j.biortech.2012.04.060.
Gao, L., & Li, B. (2004). The study of specious invasive plant, water hyacinth (Eichhornia crassipes) Achievements and Challenges. Chinese Journal of Plant Ecology, 28, 735. https://doi.org/10.17521/CJPE.2004.0097.
Gaurav, G. K., Mehmood, T., Cheng, L., Klemeš, J. J., & Shrivastava, D. K. (2020). Water hyacinth as a biomass: A review. Journal of Cleaner Production, 277. https://doi.org/10.1016/j.jclepro.2020.122214.
González Pabón, M. J., Cardeña, R., Cortón, E., & Buitrón, G. (2021). Hydrogen production in two-chamber MEC using a low-cost and biodegradable poly(vinyl) alcohol/chitosan membrane. Bioresource Technology, 319, 124168. https://doi.org/10.1016/j.biortech.2020.124168.
Mohammad, A., Gahlot, P., Moustakas, K., Kazmi, A. A., Shekhar Prasad Ojha, C., & Tyagi, V. K. (2022). Pretreatment methods to enhance solubilization and anaerobic biodegradability of lignocellulosic biomass (wheat straw): Progress and challenges. Fuel, 319, 123726. https://doi.org/10.1016/j.fuel.2022.123726.
Nemestóthy, N., Bélafi-Bakó, K., & Bakonyi, P. (2020). Enhancement of dark fermentative H2 production by gas separation membranes: A review. Bioresource Technology, 302, 122828. https://doi.org/10.1016/j.biortech.2020.122828.
Patel, S. (2012). Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Reviews in Environmental Science and Bio/Technology, 11(3), 249–259. https://doi.org/10.1007/s11157-012-9289-4.
Pugazhendhi, A., Kumar, G., & Sivagurunathan, P. (2019). Microbiome involved in anaerobic hydrogen producing granules: A mini review. Biotechnology Reports, 21, e00301. https://doi.org/10.1016/j.btre.2018.e00301.
Rani, P., Kumar Yadav, D., Yadav, A., Ram Bishnoi, N., Kumar, V., Ram, C., Pugazhendhi, A., & Kumar, S. S. (2024). Frontier in dark fermentative biohydrogen production from lignocellulosic biomass: Challenges and future prospects. Fuel, 366, 131187. https://doi.org/10.1016/j.fuel.2024.131187.
Reith, J. H., Wijffels, R. H., & Barten, H. (2003). Bio-methane & Bio-hydrogen organic Status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation.
Sahota, S., Pande, K. M., Suresh, S., Arisutha, S., Singh, D., & Shah, G. (2016). Biological Pretreatment of Water Hyacinth (Eichhornia crassipes) for Biofuel Production-A Review. Journal of Biofuels and Bioenergy, 2(2), 97. https://doi.org/10.5958/2454-8618.2016.00013.4.
Sarkar, O., Katakojwala, R., & Venkata Mohan, S. (2021). Low carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment. Green Chemistry, 23(1), 561–574. https://doi.org/10.1039/D0GC03063E.
Soares, J. F., Confortin, T. C., Todero, I., Mayer, F. D., & Mazutti, M. A. (2020). Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renewable and Sustainable Energy Reviews, 117, 109484. https://doi.org/10.1016/j.rser.2019.109484.
Srivastava, P., García-Quismondo, E., Palma, J., & González-Fernández, C. (2024). Coupling dark fermentation and microbial electrolysis cells for higher hydrogen yield: Technological competitiveness and challenges. International Journal of Hydrogen Energy, 52, 223–239. https://doi.org/10.1016/j.ijhydene.2023.04.293.
Tran, T. T. H., & Nguyen, P. K. T. (2022). Enhanced hydrogen production from water hyacinth by a combination of ultrasonic-assisted alkaline pretreatment, dark fermentation, and microbial electrolysis cell. Bioresource Technology, 357. https://doi.org/10.1016/j.biortech.2022.127340.
Varanasi, J. L., & Das, D. (2020). Maximizing biohydrogen production from water hyacinth by coupling dark fermentation and electrohydrogenesis. International Journal of Hydrogen Energy, 45(8), 5227–5238. https://doi.org/10.1016/j.ijhydene.2019.06.030.
Varanasi, J. L., Veerubhotla, R., Pandit, S., & Das, D. (2019). Biohydrogen Production Using Microbial Electrolysis Cell. En Microbial Electrochemical Technology (pp. 843–869). Elsevier. https://doi.org/10.1016/B978-0-444-64052-9.00035-2.
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Juan Jesús Reyes Valdez, Josefina García Navarro, Sandra Edith Benito Santiago

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor © D.R. Asociación Latinoamericana de Desarrollo Sustentable y Energías Renovables A. C.,