Impresión 4D para desarrollo de materiales sustentables y funcionales con enfoque a la industria alimentaria
DOI:
https://doi.org/10.56845/terys.v3i1.215Palabras clave:
Impresión 3D, Impresión 4D, Materiales inteligentes, SustentabilidadResumen
La aplicación de la impresión 4D en la industria alimentaria tiene como finalidad crear materiales inteligentes que responden a diversos estímulos físicos como temperatura, pH o luz. En esta área de investigación se ha propuesto el uso de materiales que por naturaleza son biodegradables, siendo así una opción de remplazo a materiales obtenidos de fuentes no renovables. En este artículo se introduce a los materiales sustentables generados con impresión 3D a partir de almidón, ácido poliláctico y policaprolactona modificados con diversos materiales y/o biomoléculas funcionales como el quitosano, la queratina, las antocianinas y nanomateriales de carbono para diversificar sus propiedades y/o dar una característica funcional como pueden ser la resistencia mecánica, la capacidad de barrera o una propiedad inteligente volviéndolo con esta última característica un material 4D. Estos principios han sido la base hacia una búsqueda para la generación de empaques personalizables para conservación de alimentos dinámicos y sostenibles. Es importante destacar el potencial que puede llegar a tener la impresión 4D para revolucionar la industria, proporcionando soluciones innovadoras y sostenibles para el envasado y procesamiento de alimentos, con beneficios adicionales en términos de reducción de merma, costos de almacenamiento además del uso de materiales naturales que favorecen la sustentabilidad.Citas
Almendárez-Camarillo, A., Flores-Hernandez, C. G., Balcázar-Enríquez, V., Aguirre-García, M. S., Martínez-Hernandez, A. L., & Velasco-Santos, C. (2022). Nanocellulose Extraction of Pineapple Leaves for Chitosan-starch Nanocomposites. Journal of Natural Fibers, 19(10), 3624-3637. https://doi.org/10.1080/15440478.2020.1848715.
Amaya-Amaya, V., de Icaza-Herrera, M., Martínez-Hernández, A. L., Martínez-Barrera, G., & Velasco-Santos, C. (2021). Experimental approximation of the sound absorption coefficient (∝) for 3D printed reentrant auxetic structures of poly lactic acid reinforced with chicken keratin materials. Materials Letters, 283, 128757. https://doi.org/https://doi.org/10.1016/j.matlet.2020.128757.
Arif, Z. U., Khalid, M. Y., Zolfagharian, A., & Bodaghi, M. (2022). 4D bioprinting of smart polymers for biomedical applications: Recent progress, challenges, and future perspectives. Reactive and Functional Polymers, 179, 105374.
Arora, K., Kumar, M., & Sharma, V. (2024). Investigations into 4D printed PLA/graphite composite with thermal induced shape memory effect. Rapid Prototyping Journal, 30(7), 1313-1321.
BeMiller, J. N., & Huber, K. C. (2009). Starch. In Ullmann's Encyclopedia of Industrial Chemistry. https://doi.org/https://doi.org/10.1002/14356007.a25_001.pub4.
Bustos-Ramírez, K., Martínez-Hernández, A. L., Martínez-Barrera, G., Icaza, M. D., Castaño, V. M., & Velasco-Santos, C. (2013). Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction. Materials, 6(3), 911-926. https://www.mdpi.com/1996-1944/6/3/911.
Castrejón-Parga, K., Camacho Montes, H., Rodriguez, C., Velasco-Santos, C., Martínez-Hernández, A., Bueno-Jaquez, D., Rivera-Armenta, J., Ambrosio, R., Mendoza, M., & Garcia Casillas, P. E. (2014). Chitosan–starch film reinforced with magnetite-decorated carbon nanotubes.
Cerón-Hernández, A., López-Ostria, M., Saucedo-Rivalcoba, V., Velasco-Santos, C., & Prieto-Uscanga, A. (2022). Vigilancia Tecnológica de películas antibacterianas y materiales inteligentes para quesos. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 10, 162-171. https://doi.org/10.29057/icbi.v10iEspecial7.9837.
Chen, L., Wang, W., Wang, W., & Zhang, J. (2023). Effect of Anthocyanins on Colorimetric Indicator Film Properties. Coatings, 13(10), 1682. https://www.mdpi.com/2079-6412/13/10/1682.
Fahmy, A. R., Derossi, A., & Jekle, M. (2023). Four-Dimensional (4D) Printing of Dynamic Foods—Definitions, Considerations, and Current Scientific Status. Foods, 12.
Flores-Hernández, C., Martínez-Hernández, A., Colin‐Cruz, A., Martinez‐Bustos, F., Castaño, V., Olivas-Armendariz, I., Almendarez‐Camarillo, A., & Velasco-Santos, C. (2017). Starch Modified With Chitosan and Reinforced With Feather Keratin Materials Produced by Extrusion Process: An Alternative to Starch Polymers. Starch - Stärke, 70. https://doi.org/10.1002/star.201700295.
Flores-Hernández, C. G., Colin-Cruz, A., Velasco-Santos, C., Castaño, V. M., Almendarez-Camarillo, A., Olivas-Armendariz, I., & Martínez-Hernández, A. L. (2018). Chitosan–Starch–Keratin Composites: Improving Thermo-Mechanical and Degradation Properties Through Chemical Modification. Journal of Polymers and the Environment, 26(5), 2182-2191. https://doi.org/10.1007/s10924-017-1115-1.
Flores-Hernández, C. G., Colín-Cruz, A., Velasco-Santos, C., Castaño, V. M., Rivera-Armenta, J. L., Almendarez-Camarillo, A., García-Casillas, P. E., & Martínez-Hernández, A. L. (2014). All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers. Polymers, 6(3), 686-705. https://www.mdpi.com/2073-4360/6/3/686.
Flores-Hernandez, C. G., Martinez-Hernandez, A. L., Colin-Cruz, A., Martinez-Bustos, F., Castaño, V. M., Olivas-Armendariz, I., Almendarez-Camarillo, A., & Velasco-Santos, C. (2018). Starch Modified With Chitosan and Reinforced With Feather Keratin Materials Produced by Extrusion Process: An Alternative to Starch Polymers. Starch - Stärke, 70(11-12), 1700295. https://doi.org/https://doi.org/10.1002/star.201700295.
Flores-Hernandez, C. G., Murillo-Segovia, B., Martinez-Hernandez, A. L., & C, V.-S. (2017). Keratin as Renewable Material to Develop Polymer Composites: Natural and Synthetic Matrices. In Handbook of Composites from Renewable Materials (pp. 1-29). https://doi.org/https://doi.org/10.1002/9781119441632.ch105.
Flores-Hernandez, C. G., Velasco-Santos, C., Rivera-Armenta, J. L., Gomez-Guzman, O., Yañez-Limon, J. M., Olivas-Armendariz, I., Lopez-Barroso, J., & Martinez-Hernandez, A. L. (2021). Additive manufacturing of green composites: Poly (lactic acid) reinforced with keratin materials obtained from Angora rabbit hair. Journal of Applied Polymer Science, 138(18), 50321. https://doi.org/https://doi.org/10.1002/app.50321.
Ghazal, A. F., Zhang, M., Bhandari, B., & Chen, H. (2021). Investigation on spontaneous 4D changes in color and flavor of healthy 3D printed food materials over time in response to external or internal pH stimulus. Food Research International, 142, 110215. https://doi.org/https://doi.org/10.1016/j.foodres.2021.110215.
İlaslan, K. (2024). Use of modified polycaprolactone polymer in food packaging applications: a review [Modifiye polikaprolakton polimerinin gıda ambalajlama uygulamalarında kullanımı: bir derleme]. Gıda ve Yem Bilimi Teknolojisi Dergisi, 0(32), 13-26. https://doi.org/10.56833/gidaveyem.1485689.
Invernizzi, M., Turri, S., Levi, M., & Suriano, R. (2018). 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers. European Polymer Journal, 101, 169-176.
Jenish Patoliya, K. V., Mahesh Makwana, Piyush Moradiya. (2023). Shape deformation/transformation in 4D printed food: A review. Pharma Innovation, 12(6).
Jimenez-Cervantes Amieva, E., Fuentes-Ramirez, R., Martinez-Hernandez, A. L., Millan-Chiu, B., Lopez-Marin, L. M., Castaño, V. M., & Velasco-Santos, C. (2015). Graphene oxide and reduced graphene oxide modification with polypeptide chains from chicken feather keratin. Journal of Alloys and Compounds, 643, S137-S143. https://doi.org/https://doi.org/10.1016/j.jallcom.2014.12.062.
Jimenez-Cervantes, E., Lopez Barroso, J., Martínez-Hernández, A., & Velasco-Santos, C. (2016). Graphene‐Based Materials Functionalization with Natural Polymeric Biomolecules. In. https://doi.org/10.5772/64001.
Juárez-Méndez, M. E., Lozano-Navarro, J. I., Velasco-Santos, C., Pérez-Sánchez, J. F., Zapién-Castillo, S., Del Angel-Moxica, I. E., Melo-Banda, J. A., Tijerina-Ramos, B. I., & Díaz-Zavala, N. P. (2021). Effect of the Melicoccus bijugatus leaf and fruit extracts and acidic solvents on the antimicrobial properties of chitosan-starch films. J Appl Microbiol, 131(3), 1162-1176. https://doi.org/10.1111/jam.15025.
Kim, S. W., & Choi, H. M. (2016). Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly (lactic acid) nanocomposite films. Korean Journal of Chemical Engineering, 33, 330-336.
Liu, Z., Hu, X., Lu, S., Xu, B., Bai, C., Ma, T., & Song, Y. (2024). Applications of physical and chemical treatments in plant-based gels for food 3D printing. Journal of Food Science, 89(7), 3917-3934. https://doi.org/https://doi.org/10.1111/1750-3841.17101.
Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology, 69, 83-94. https://doi.org/https://doi.org/10.1016/j.tifs.2017.08.018.
Lozano-Navarro, J. I., Díaz-Zavala, N. P., Velasco-Santos, C., Martínez-Hernández, A. L., Tijerina-Ramos, B. I., García-Hernández, M., Rivera-Armenta, J. L., Páramo-García, U., & Reyes-de la Torre, A. I. (2017). Antimicrobial, Optical and Mechanical Properties of Chitosan-Starch Films with Natural Extracts. Int J Mol Sci, 18(5). https://doi.org/10.3390/ijms18050997.
Lozano-Navarro, J. I., Díaz-Zavala, N. P., Velasco-Santos, C., Melo-Banda, J. A., Páramo-García, U., Paraguay-Delgado, F., García-Alamilla, R., Martínez-Hernández, A. L., & Zapién-Castillo, S. (2018). Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties. Materials, 11(1), 120. https://www.mdpi.com/1996-1944/11/1/120.
Ma, S., Jiang, Z., Wang, M., Zhang, L., Liang, Y., Zhang, Z., Ren, L., & Ren, L. (2021). 4D printing of PLA/PCL shape memory composites with controllable sequential deformation. Bio-Design and Manufacturing, 4, 867-878.
Ma, Y., Shih, C. J., & Bao, Y. (2024). Advances in 4D printing of biodegradable photopolymers. Responsive Materials, e20240008.
Malikmammadov, E., Tanir, T. E., Kiziltay, A., Hasirci, V., & Hasirci, N. (2018). PCL and PCL-based materials in biomedical applications. Journal of Biomaterials science, Polymer edition, 29(7-9), 863-893.
Martínez-Hernández, A., & Velasco-Santos, C. (2012). Keratin fibers from chicken feathers: Structure and advances in polymer composites. Keratin: Structure, Properties and Applications, 149-212.
Nasution, H., Harahap, H., Julianti, E., Safitri, A., & Jaafar, M. (2023). Smart packaging based on polylactic acid: The effects of antibacterial and antioxidant agents from natural extracts on physical–mechanical properties, colony reduction, perishable food shelf life, and future prospective. Polymers, 15(20), 4103.
Navarro-Baena, I., Sessini, V., Dominici, F., Torre, L., Kenny, J. M., & Peponi, L. (2016). Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer degradation and stability, 132, 97-108.
Rinaldi, G., Coccia, E., Ferrentino, N., Germinario, C., Grifa, C., Paolucci, M., & Pappalardo, D. (2024). Effect of Keratin Waste on Poly (ε‐Caprolactone) Films: Structural Characterization, Thermal Properties, and Keratinocytes Viability and Proliferation Studies. Advances in Polymer Technology, 2024(1), 3308910.
Rodríguez-González, C., Martínez-Hernández, A. L., Castaño, V. M., Kharissova, O. V., Ruoff, R. S., & Velasco-Santos, C. (2012). Polysaccharide Nanocomposites Reinforced with Graphene Oxide and Keratin-Grafted Graphene Oxide. Industrial & Engineering Chemistry Research, 51(9), 3619-3629. https://doi.org/10.1021/ie200742x.
Rodríguez-González, C., Martínez-Hernández, A. L., Castaño, V. M., Kharissova, O. V., Ruoff, R. S., & Velasco-Santos, C. (2012). Polysaccharide Nanocomposites Reinforced with Graphene Oxide and Keratin-Grafted Graphene Oxide.
Rojas-Martínez, L. E., Flores-Hernandez, C. G., López-Marín, L. M., Martinez-Hernandez, A. L., Thorat, S. B., Reyes Vasquez, C. D., Del Rio-Castillo, A. E., & Velasco-Santos, C. (2020). 3D printing of PLA composites scaffolds reinforced with keratin and chitosan: Effect of geometry and structure. European Polymer Journal, 141, 110088. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2020.110088.
Sari, N., Suteja, S., Sapuan, S., & Ilyas, R. (2021). Properties and Food Packaging Application of Poly‐(Lactic) Acid. Bio‐based Packaging: Material, Environmental and Economic Aspects, 245-263.
Sharma, S., Ghosh, T., Mulchandani, N., & Katiyar, V. (2024). Biodegradable Synthetic Poly (Lactic Acid)(PLA) for Food Packaging Application. Agro‐Waste Derived Biopolymers and Biocomposites: Innovations and Sustainability in Food Packaging, 295-317.
Singh, R., & Ahn, Y. H. (2024). Progress of Biopolymers in 3D and 4D Printing for Biomedical Applications. Biopolymers for Biomedical Applications, 479-507.
Srivastava, S., Pandey, V. K., Singh, R., & Dar, A. H. (2023). Recent insights on advancements and substantial transformations in food printing technology from 3 to 7D. Food Sci Biotechnol, 32(13), 1783-1804. https://doi.org/10.1007/s10068-023-01352-8.
Vázquez-Hernández, C., Ramos-Galicia, L., Velasco-Santos, C., Bertolacci, L., Zahid, M., Yañez-Limón, J. M., Perotto, G., & Martinez-Hernandez, A. L. (2024). Effect of keratin-rich fibers from rabbit hair in two polymers processed using additive manufacturing: FDM and SLA. Journal of Manufacturing Processes, 120, 1104-1114. https://doi.org/https://doi.org/10.1016/j.jmapro.2024.04.075.
Xian, D., Wu, L., Lin, K., Liu, P., Wu, S., Yuan, Y., & Xie, F. (2024). Augmenting corn starch gel printability for architectural 3D modeling for customized food. Food Hydrocolloids, 156, 110294. https://doi.org/https://doi.org/10.1016/j.foodhyd.2024.110294.
Zeng, Q., Du, Z., Qin, C., Wang, Y., Liu, C., & Shen, C. (2020). Enhanced thermal, mechanical and electromagnetic interference shielding properties of graphene nanoplatelets-reinforced poly (lactic acid)/poly (ethylene oxide) nanocomposites. Materials Today Communications, 25, 101632.
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Blanca Marisol Dominguez Martínez, Diana Maricruz Perez Santos, Ana Laura Martínez Hernández, Carlos Velasco-Santos

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor © D.R. Asociación Latinoamericana de Desarrollo Sustentable y Energías Renovables A. C.,