Correlación de las relaciones de cambio reológicas en la cinética de crecimiento de H.Pluvialis en agua residual municipal

Descargas: 19

Autores/as

DOI:

https://doi.org/10.56845/rebs.v7i2.566

Palabras clave:

Agua residual, H. Pluvialis, Propiedades Reológicas, Reactor Airlift

Resumen

El objetivo de esta investigación fue evaluar la biodegradación de aguas residuales municipales mediante el cultivo de Haematococcus pluvialis en un fotobiorreactor airlift de 4 L durante un período de 14 días, estableciendo la relación entre la cinética de crecimiento y los cambios en las propiedades reológicas del medio como una posible estrategia de monitoreo del proceso. Para identificar el porcentaje de inóculo ideal, se implementó un diseño experimental unifactorial, en el que se realizaron pruebas a diferentes niveles para determinar diferencias estadísticamente significativas entre ellos, basadas en la biodegradación de la materia orgánica. Se analizaron tres niveles de inóculo (5, 10 y 15 %) en fotobiorreactores de 400 mL, donde se monitoreó el crecimiento celular, la DQO total, la DQO soluble y el pH. Posteriormente, en el fotobiorreactor airlift se monitorearon los cambios en el esfuerzo cortante y la viscosidad aparente en un rango de 0.1–200 rpm, junto con el crecimiento de la densidad celular y la degradación de contaminantes (DQO total, DQO soluble, nitrógeno total y fósforo total) cada 2 días durante 14 días. Los experimentos a escala de laboratorio mostraron remociones de DQO soluble superiores al 95 %, siendo el nivel de inóculo del 15 % el que presentó estadísticamente la mayor remoción de carga orgánica. En la ampliación de escala en el reactor airlift, se alcanzó un porcentaje de remoción de DQO soluble del 78 %, y se obtuvieron concentraciones por debajo de los límites máximos permisibles establecidos por la normativa mexicana (NOM-001-SEMARNAT-2021) para el contenido de fósforo y nitrógeno. El monitoreo reológico mostró afinidad con el modelo de Herschel–Bulkley (R² > 0.99), observándose una tendencia decreciente en el índice de consistencia (k), que pasó de 8.517 × 10⁻⁵ a 1.453 × 10⁻⁵, y una tendencia creciente en el índice de flujo (n), que se incrementó de 1.583 a 1.905. Esta mejora se atribuye a la reducción de la DQO soluble a valores tan bajos como 180 mg/L y al aumento de la biomasa de microalgas, que alcanzó hasta 1.3 × 10⁷ células/mL.

Citas

Abdel-Raouf, N., Al-Homaidan, A., & Ibraheem, I. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005

Adesanya, V. O., Vadillo, D. C., & Mackley, M. R. (2012). The rheological characterization of algae suspensions for the production of biofuels. Journal of Rheology, 56(4), 925–939. https://doi.org/10.1122/1.4717494

Amaro, H. M., Salgado, E. M., Nunes, O. C., Pires, J. C., & Esteves, A. F. (2023). Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. Journal of Environmental Management, 337, 117678. https://doi.org/10.1016/j.jenvman.2023.117678

APHA, Wpcf, & AWWA. (2017). Standard methods for the examination of water and wastewater (23rd ed.). APHA.

Ata, R., Tore, G. Y., & Shah, M. P. (2021). Emerging technologies for treatment of antibiotic residues from wastewater influent/effluent for sustainable environment: A case study with NFC-doped titania immobilized on polystyrene as an efficient technology. Current Research in Green and Sustainable Chemistry, 4, 100065. https://doi.org/10.1016/j.crgsc.2021.100065

Attar, S. B., Morillas-España, A., Sánchez-Zurano, A., Pessôa, L. C., Pinna-Hernández, M. G., De Jesus Assis, D., López, J. L. C., & Acién, G. (2023b). Influence of culture media composition on the rheology of microalgae concentrates on a large scale. New Biotechnology, 77, 90–99. https://doi.org/10.1016/j.nbt.2023.07.005

Azam, H. M., & Finneran, K. T. (2013). Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2⋅8H2O) in septic system wastewater. Chemosphere, 97, 1–9. https://doi.org/10.1016/j.chemosphere.2013.09.032

Behin, J., & Amiri, P. (2023). A review of recent advances in airlift reactors technology with emphasis on environmental remediation. Journal of Environmental Management, 335, 117560. https://doi.org/10.1016/j.jenvman.2023.117560

Bio6. (n.d.). https://rmiq.org/iqfvp/Pdfs/Vol.%2015,%20No.%202/Bio6/eBio6.html

Benner, P., Meier, L., Pfeffer, A., Krüger, K., Vargas, J. E. O., & Weuster-Botz, D. (2022). Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess and Biosystems Engineering, 45(5), 791–813. https://doi.org/10.1007/s00449-022-02711-1

De Moraes, L. B. S., Mota, G. C. P., Santos, E. P. D., Da Silva Campos, C. V. F., Da Silva, B. a. B., Gálvez, A. O., & De Souza Bezerra, R. (2023). Haematococcus pluvialis cultivation and astaxanthin production using different nitrogen sources with pulse feeding strategy. Biomass Conversion and Biorefinery, 14(14), 16231–16243. https://doi.org/10.1007/s13399-023-03824-7

Estrada-García, J., Hernández-Aguilar, E., Romero-Mota, D. I., & Méndez-Contreras, J. M. (2023). Influence of anaerobic biotransformation process of agro-industrial waste with Lactobacillus acidophilus on the rheological parameters: case of study of pig manure. Archives of Microbiology, 205(3). https://doi.org/10.1007/s00203-023-03437-8

Fu, J., Huang, Y., Liao, Q., Xia, A., Fu, Q., & Zhu, X. (2019). Photo-bioreactor design for microalgae: A review from the aspect of CO2 transfer and conversion. Bioresource Technology, 292, 121947. https://doi.org/10.1016/j.biortech.2019.121947

Gutiérrez-Casiano, N., Hernández-Aguilar, E., Alvarado-Lassman, A., & Méndez-Contreras, J. M. (2022). Removal of carbon and nitrogen in wastewater from a poultry processing plant in a photobioreactor cultivated with the microalga Chlorella vulgaris. Journal of Environmental Science and Health Part A, 57(7), 620–633. https://doi.org/10.1080/10934529.2022.2096986

Gutiérrez-Casiano, N., Hernández-Aguilar, E., Alvarado-Lassman, A., & Méndez-Contreras, J. M. (2022). Removal of carbon and nitrogen in wastewater from a poultry processing plant in a photobioreactor cultivated with the microalga Chlorella vulgaris. Journal of Environmental Science and Health Part A, 57(7), 620–633. https://doi.org/10.1080/10934529.2022.2096986

Han, W., Jin, W., Li, Z., Wei, Y., He, Z., Chen, C., Qin, C., Chen, Y., Tu, R., & Zhou, X. (2021). Cultivation of microalgae for lipid production using municipal wastewater. Process Safety and Environmental Protection, 155, 155–165. https://doi.org/10.1016/j.psep.2021.09.014 Huang, Y., Ragush, C. M., Johnston, L. H., Hall, M. W., Beiko, R. G., Jamieson, R. C., & Hansen, L. T. (2021). Changes in bacterial communities during treatment of municipal wastewater in arctic wastewater stabilization ponds. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.710853

Jeong, D., & Jang, A. (2021). Mitigation of self-shading effect in embedded optical fiber in Chlorella sorokiniana immobilized polyvinyl alcohol gel beads. Chemosphere, 283, 131195. https://doi.org/10.1016/j.chemosphere.2021.131195

Khalid, A. a. H., Yaakob, Z., Abdullah, S. R. S., & Takriff, M. S. (2018). Analysis of the elemental composition and uptake mechanism of Chlorella sorokiniana for nutrient removal in agricultural wastewater under optimized response surface methodology (RSM) conditions. Journal of Cleaner Production, 210, 673–686. https://doi.org/10.1016/j.jclepro.2018.11.095

Laroche, C. (2022). Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Marine Drugs, 20(5), 336. https://doi.org/10.3390/md20050336

Li, L., Xu, X., Wang, W., Lau, R., & Wang, C. (2022). Hydrodynamics and mass transfer of concentric-tube internal loop airlift reactors: A review. Bioresource Technology, 359, 127451. https://doi.org/10.1016/j.biortech.2022.127451

Mathew, M. M., Khatana, K., Vats, V., Dhanker, R., Kumar, R., Dahms, H., & Hwang, J. (2022). Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants—A Review. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.801051

Mazziero, V. T., Batista, V. G., De Oliveira, D. G., Scontri, M., De Paula, A. V., & Cerri, M. O. (2022). Characterization of packed-bed in the downcomer of a concentric internal-loop airlift bioreactor. Biochemical Engineering Journal, 181, 108407. https://doi.org/10.1016/j.bej.2022.108407

Nahidian, B., Ghanati, F., Shahbazi, M., & Soltani, N. (2018). Effect of nutrients on the growth and physiological features of newly isolated Haematococcus pluvialis TMU1. Bioresource Technology, 255, 229–237. https://doi.org/10.1016/j.biortech.2018.01.130

Onyeaka, H., Miri, T., Obileke, K., Hart, A., Anumudu, C., & Al-Sharify, Z. T. (2021). Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Science & Technology, 1, 100007. https://doi.org/10.1016/j.ccst.2021.100007

Pan, M., Zhu, X., Pan, G., & Angelidak, I. (2021). Integrated valorization system for simultaneous high strength organic wastewater treatment and astaxanthin production from Haematococcus pluvialis. Bioresource Technology, 326, 124761. https://doi.org/10.1016/j.biortech.2021.124761

Pérez-Guzmán, S. M., Hernández-Aguilar, E., Rosas-Mendoza, E. S., Alvarado-Lassman, A., & Méndez-Contreras, J. M. (2024). Efecto de la presión de saturación en la operación en modo batch de un reactor DAF escala laboratorio para el tratamiento de efluentes municipales. Tendencias en Energías Renovables y Sustentabilidad ., 3(1), 139–144. https://doi.org/10.56845/terys.v3i1.218

Płuciennik-Koropczuk, E., & Myszograj, S. (2019). New approach in COD fractionation methods. Water, 11(7), 1484. https://doi.org/10.3390/w11071484

Qiu, R., Gao, S., Lopez, P. A., & Ogden, K. L. (2017). Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 28, 192–199. https://doi.org/10.1016/j.algal.2017.11.004

Radice, R. P., Grassi, G., Capasso, G., Montagnuolo, E., Aiello, D., Perna, A. M., Marzocco, S., & Martelli, G. (2024). Five mutated genotypes of Haematococcus pluvialis useful for crude oil wastewater bioremediation. Algal Research, 83, 103693. https://doi.org/10.1016/j.algal.2024.103693

Robles-Heredia, J. C., Sacramento-Rivero, J. C., Ruiz-Marín, A., Baz-Rodríguez, S., Canedo-López, Y., & Narváez-García, A. (2016). Evaluation of cell growth, nitrogen removal and lipid production by chlorella vulgaris to different conditions of aeration in two types of annular photobioreactors. Revista Mexicana De Ingeniería Química, 15(2), 361–377.

Rout, P. R., Shahid, M. K., Dash, R. R., Bhunia, P., Liu, D., Varjani, S., Zhang, T. C., & Surampalli, R. Y. (2021). Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. Journal of Environmental Management, 296, 113246. https://doi.org/10.1016/j.jenvman.2021.113246

Sales-Pérez, R. E., Sales-Chávez, R. M., Romero-Mota, D. I., Estrada-García, J., & Méndez-Contreras, J. M. (2023a). Removal of organic matter during adaptation of Nannochloropsis oculata in livestock waste. Renewable Energy Biomass & Sustainability, 5(2), 32–39. https://doi.org/10.56845/rebs.v5i2.93

Schneider, N., & Gerber, M. (2014). Correlation between viscosity, temperature and total solid content of algal biomass. Bioresource Technology, 170, 293–302. https://doi.org/10.1016/j.biortech.2014.07.107

Simha, P., Vasiljev, A., Randall, D. G., & Vinnerås, B. (2023). Factors influencing the recovery of organic nitrogen from fresh human urine dosed with organic/inorganic acids and concentrated by evaporation in ambient conditions. The Science of the Total Environment, 879, 163053. https://doi.org/10.1016/j.scitotenv.2023.163053

Singh, V., Phuleria, H. C., & Chandel, M. K. (2017). Greenhouse Gas Emissions from Sewage Treatment Plants Based on Sequential Batch Reactor in Maharashtra. In Water science and technology library. In V. Singh, S. Yadav, & R. Yadava (Eds.), Climate change impacts (pp. 195–210). Springer.https://doi.org/10.1007/978-981-10-5714-4_13

Sobolewska, E., Borowski, S., & Nowicka-Krawczyk, P. (2024). Cultivation of microalgae in liquid digestate to remove nutrients and organic contaminants. BioEnergy Research, 17(3), 1843–1855. https://doi.org/10.1007/s12155-024-10753-4

Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. The Science of the Total Environment, 762, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590

Tang, J., Qu, X., Chen, S., Pu, Y., He, X., Zhou, Z., Wang, H., Jin, N., Huang, J., Shah, F., Hu, Y., & Abomohra, A. (2023). Microalgae cultivation using municipal wastewater and anaerobic membrane effluent: lipid production and nutrient removal. Water, 15(13), 2388. https://doi.org/10.3390/w15132388

Uyar, B., Ali, M. D., & Uyar, G. E. O. (2024). Design parameters comparison of bubble column, airlift and stirred tank photobioreactors for microalgae production. Bioprocess and Biosystems Engineering, 47(2), 195–209. https://doi.org/10.1007/s00449-023-02952-8

Vega, J. M. (2018). Nitrogen and sulfur metabolism in microalgae and plants: 50 years of research. In F. Cánovas, U. Lüttge, C. Leuschner, & M. C. Risueño (Eds.), Progress in botany (Vol. 81, pp. 143–169). Springer. https://doi.org/10.1007/124_2018_26

Wang, H., Qi, B., Jiang, X., Jiang, Y., Yang, H., Xiao, Y., Jiang, N., Deng, L., & Wang, W. (2019). Microalgal interstrains differences in algal-bacterial biofloc formation during liquid digestate treatment. Bioresource Technology, 289, 121741. https://doi.org/10.1016/j.biortech.2019.121741

Whitton, R., Ometto, F., Pidou, M., Jarvis, P., Villa, R., & Jefferson, B. (2015). Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environmental Technology Reviews, 4(1), 133–148. https://doi.org/10.1080/21622515.2015.1105308

Wu, Z., Duan, H., Li, K., & Ye, L. (2022). A comprehensive carbon footprint analysis of different wastewater treatment plant configurations. Environmental Research, 214, 113818. https://doi.org/10.1016/j.envres.2022.113818

Xu, H., Tang, Z., Yang, D., Dai, X., & Chen, H. (2023). Enhanced growth and auto-flocculation of Scenedesmus quadricauda in anaerobic digestate using high light intensity and nanosilica: A biomineralization-inspired strategy. Water Research, 235, 119893. https://doi.org/10.1016/j.watres.2023.119893

Xu, L., Weathers, P. J., Xiong, X., & Liu, C. (2009). Microalgal bioreactors: Challenges and opportunities. Engineering in Life Sciences, 9(3), 178–189. https://doi.org/10.1002/elsc.200800111

Zhang, W., Yong, Y., Zhang, G., Yang, C., & Mao, Z. (2014). Mixing Characteristics and Bubble Behavior in an Airlift Internal Loop Reactor with Low Aspect Ratio. Chinese Journal of Chemical Engineering, 22(6), 611–621. https://doi.org/10.1016/s1004-9541(14)60089-6

Zhou, J., Yang, L., Huang, K., Chen, D., & Gao, F. (2022). Mechanisms and application of microalgae on removing emerging contaminants from wastewater: A review. Bioresource Technology, 364, 128049. https://doi.org/10.1016/j.biortech.2022.128049

Descargas

Publicado

2025-09-22

Cómo citar

Carmona-Rosas, U., Sales-Pérez, R. E., Estrada-García, J., Hernández Aguilar, E., & Méndez-Contreras, J. M. (2025). Correlación de las relaciones de cambio reológicas en la cinética de crecimiento de H.Pluvialis en agua residual municipal. Renewable Energy, Biomass & Sustainability, 7(2), 1–12. https://doi.org/10.56845/rebs.v7i2.566

Número

Sección

Articles