Rainwater Harvesting at Universities. Case study: Valle de las Palmas

PDF downloads: 398

Authors

DOI:

https://doi.org/10.56845/rebs.v5i2.82

Keywords:

rainwater harvesting systems, semi-arid areas, college facilities, sustainable water management

Abstract

Rainwater harvesting systems have become a necessary strategy in universities to reduce water consumption and to achieve efficient use of water resources, particularly in semi-arid areas, where the use of these systems is ideal and innovative for sustainable water management. However, the design and implementation of these systems needs to be well planned and cost-effective as well as compliant of the needs of the specific college campus. This work proposes to implement this technology for the design of a rainwater harvesting system at the Valle de las Palmas academic unit: the Faculty of Engineering and Technology Sciences (FCITEC), in order to take advantage of the area’s Winter rainfall, and to be used on the landscape areas of the campus. There is evidence that certain universities have obtained significant savings and a decreasing demand for water from their municipal hydraulic networks, such as the Federal University of Pará, in Japan and the Federal University of Viçosa in Brazil. The FCITEC is located in the municipality of Tijuana, Baja California; a region considered as semi-arid, with long drought periods, high temperatures and a short season of Winter rainfall. Baja California’s main source of water supply comes from the Colorado River, representing 80% of the state’s water supply while 20% comes from underground aquifers. Due to the limited rainfall in the Colorado River basin, water levels have dropped significantly in recent years, affecting the city of Tijuana since, during hot seasons, the public water system implemented rotation practices which provoked many neighborhoods to run out of water (including the FCITEC). Therefore, it is a priority to consider water collection systems to take advantage of winter rains as a sustainable and profitable short-term solution for water management in universities, thus reducing the demand for consumption from the water supply network and contributing to the environmental sustainability of water resources.

References

Aladenola, O. O., & Adeboye, O. B. (2010). Assessing the potential for rainwater harvesting. Water resources management, 24, 2129-2137. https://doi.org/10.1007/s11269-009-9542-y

Almeida, A. P., Liberalesso, T., Silva, C. M., & Sousa, V. (2021). Dynamic modelling of rainwater harvesting with green roofs in university buildings. Journal of Cleaner Production, 312, 127655. https://doi.org/10.1016/j.jclepro.2021.127655

Ammar, A., Riksen, M., Ouessar, M., & Ritsema, C. (2016). Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. International Soil and Water Conservation Research, 4(2), 108-120. https://doi.org/10.1016/j.iswcr.2016.03.001

Anaya-Garduño, M. (2017). Aprovechamiento del agua de lluvia: calidad, cantidad y abastecimiento continuo para diversos usos. Editorial del Colegio de Postgraduados, Colegio de Postgraduados.

Anchan, S. S., & Prasad, H. S. (2021). Feasibility of roof top rainwater harvesting potential-A case study of South Indian University. Cleaner Engineering and Technology, 4, 100206. https://doi.org/10.1016/j.clet.2021.100206

Bitterman, P., Tate, E., Van Meter, K. J., & Basu, N. B. (2016). Water security and rainwater harvesting: A conceptual framework and candidate indicators. Applied Geography, 76, 75-84. https://doi.org/10.1016/j.apgeog.2016.09.013

Budihardjo, M. A., Arumdani, I. S., Puspita, A. S., & Ambariyanto, A. (2022). Improving Water Conservation at Universitas Diponegoro, Indonesia. Journal of Sustainability Perspectives, 2, 277-284. https://doi.org/10.14710/baf.%v.%i.%Y.106-116

Cardoso, R. N. C., Blanco, C. J. C., & Duarte, J. M. (2020). Technical and financial feasibility of rainwater harvesting systems in public buildings in Amazon, Brazil. Journal of Cleaner Production, 260, 121054. https://doi.org/10.1016/j.jclepro.2020.121054

Critchley, W., Siegert, K., Chapman, C., & Finket, M. (2013). Water harvesting: A manual for the design and construction of water harvesting schemes for plant production. Scientific Publishers.

da Silva, L. C. C., Oliveira Filho, D., Silva, I. R., e Pinto, A. C. V., & Vaz, P. N. (2019). Water sustainability potential in a university building–case study. Sustainable Cities and Society, 47, 101489. https://doi.org/10.1016/j.scs.2019.101489

Dos Santos, S. M., & de Farias, M. M. M. (2017). Potential for rainwater harvesting in a dry climate: Assessments in a semiarid region in northeast Brazil. Journal of Cleaner Production, 164, 1007-1015. https://doi.org/10.1016/j.jclepro.2017.06.251

FAO. (2013). Captación y almacenamiento de agua de lluvia. Opciones técnicas para la agricultura familiar en América Latina y el Caribe. Santiago, Chile: FAO. https://www.fao.org/3/i3247s/i3247s.pdf

Gebru, T. A., Brhane, G. K., & Gebremedhin, Y. G. (2021). Contributions of water harvesting technologies intervention in arid and semi-arid regions of Ethiopia, in ensuring households’ food security, Tigray in focus. Journal of Arid Environments, 185, 104373. https://doi.org/10.1016/j.jaridenv.2020.104373

Geraldi, M. S., & Ghisi, E. (2017). Influence of the length of rainfall time series on rainwater harvesting systems: A case study in Berlin. Resources, Conservation and Recycling, 125, 169-180. https://doi.org/10.1016/j.resconrec.2017.06.011

Guo, R., & Guo, Y. (2018). Stochastic modelling of the hydrologic operation of rainwater harvesting systems. Journal of hydrology, 562, 30-39. https://doi.org/10.1016/j.jhydrol.2018.04.062

Husnain, S. A., Tariq, K. A., & Khan, N. (2022). Estimation of Rainwater Harvesting Potential in an Educational Institute of Faisalabad, Pakistan. Journal of Sustainability Perspectives, 2. https://doi.org/10.14710/baf.%v.%i.%Y.117-129

Imteaz, M. A., Adeboye, O. B., Rayburg, S., & Shanableh, A. (2012). Rainwater harvesting potential for southwest Nigeria using daily water balance model. Resources, conservation and recycling, 62, 51-55. https://doi.org/10.1016/j.resconrec.2012.02.007

Imteaz, M. A., Ahsan, A., & Shanableh, A. (2013). Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city. Resources, Conservation and Recycling, 77, 37-43. https://doi.org/10.1016/j.resconrec.2013.05.006

Li, S., Liu, Y., Her, Y., Chen, J., Guo, T., & Shao, G. (2021). Improvement of simulating sub-daily hydrological impacts of rainwater harvesting for landscape irrigation with rain barrels/cisterns in the SWAT model. Science of The Total Environment, 798, 149336. https://doi.org/10.1016/j.scitotenv.2021.149336

Mamangkey, E. T., & Sukmara, R. B. (2021, November). Rainwater harvesting as an alternative of freshwater supply in Balikpapan city–a case study of Institut Teknologi Kalimantan. In IOP Conference Series: Earth and Environmental Science (Vol. 896, No. 1, p. 012040). IOP Publishing. https://doi.org/10.1088/1755-1315/896/1/012040

Márquez, J. D., Peña, L. E., Barrios, M., & Leal, J. (2021). Detection of rainwater harvesting ponds by matching terrain attributes with hydrologic response. Journal of Cleaner Production, 296, 126520. https://doi.org/10.1016/j.jclepro.2021.126520

Mitchell, V. G. (2007). How important is the selection of computational analysis method to the accuracy of rainwater tank behaviour modelling?. Hydrological Processes: An International Journal, 21(21), 2850-2861. https://doi.org/10.1002/hyp.6499

Nop, C., Fadhil, R. M., & Unami, K. (2021). A multi-state Markov chain model for rainfall to be used in optimal operation of rainwater harvesting systems. Journal of Cleaner Production, 285, 124912. https://doi.org/10.1016/j.jclepro.2020.124912

Rahman, A., Snook, C., Haque, M. M., & Hajani, E. (2020). Use of design curves in the implementation of a rainwater harvesting system. Journal of cleaner production, 261, 121292. https://doi.org/10.1016/j.jclepro.2020.121292

Şahin, N. İ., & Manioğlu, G. (2019). Water conservation through rainwater harvesting using different building forms in different climatic regions. Sustainable Cities and Society, 44, 367-377. https://doi.org/10.1016/j.scs.2018.10.010

Salla, M. R., Lopes, G. B., Pereira, C. E., Moura Neto, J. D. C., & Pinheiro, A. M. (2013). Technical viability of implementation of the stormwater harvesting system for non-potable uses at a university. Ambiente Construído, 13, 167-181. https://doi.org/10.1590/S1678-86212013000200013

Sangave, A. A., Mohite, S. J., Pawar, H. R., Kulkarni, V. V., & Abhangrao, C. R. (2019). Design & Estimation of Rain Water Harvesting System for a college campus in Solapur City. Int. J. Eng. Adv. Technol, 8, 4629-4632. https://doi.org/10.35940/ijeat.F8909.088619

Sepehri, M., Malekinezhad, H., Ilderomi, A. R., Talebi, A., & Hosseini, S. Z. (2018). Studying the effect of rain water harvesting from roof surfaces on runoff and household consumption reduction. Sustainable Cities and Society, 43, 317-324. https://doi.org/10.1016/j.scs.2018.09.005

Silva, M. B. M. D., Brandão, I. A. D. P., & Ribeiro, M. M. R. (2022). Feasibility, seasonality and reliability of rainwater harvesting in buildings of a university in Campina Grande, Paraíba. RBRH, 27. https://doi.org/10.1590/2318-0331.272220210127

Tamagnone, P., Comino, E., & Rosso, M. (2020). Rainwater harvesting techniques as an adaptation strategy for flood mitigation. Journal of Hydrology, 586, 124880. https://doi.org/10.1016/j.jhydrol.2020.124880

Tapia-Vargas, M. (2016). Diseño de redes hidrosanitarias y de gas para arquitectura. Gustavo A. Madero, Mexico: Instituto Politécnico Nacional

Teston, A., Geraldi, M. S., Colasio, B. M., & Ghisi, E. (2018). Rainwater harvesting in buildings in Brazil: A literature review. Water, 10(4), 471. https://doi.org/10.3390/w10040471

Vargas-Parra, M. V., Villalba, G., & Gabarrell, X. (2013). Applying exergy analysis to rainwater harvesting systems to assess resource efficiency. Resources, Conservation and Recycling, 72, 50-59. https://doi.org/10.1016/j.resconrec.2012.12.008

XIX Ayuntamiento de Tijuana. (20 de Noviembre de 2008). Instituto Metropolitano de Planeación de Tijuana. Recuperado el 20 de Septiembre de 2021, de Instituto Metropolitano de Planeación de Tijuana: https://implan.tijuana.gob.mx/

Youn, S. G., Chung, E. S., Kang, W. G., & Sung, J. H. (2012). Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change. Resources, Conservation and Recycling, 65, 136-144. https://doi.org/10.1016/j.resconrec.2012.05.005

Downloads

Published

2023-09-04

How to Cite

Ravelo-García, A., Castañon-Bautista, M. C., & Pitones-Rubio, J. A. (2023). Rainwater Harvesting at Universities. Case study: Valle de las Palmas. Renewable Energy, Biomass & Sustainability, 5(2), 1–11. https://doi.org/10.56845/rebs.v5i2.82

Issue

Section

Original Articles