Performance of an anaerobic biofilm reactor through the application of different operational conditions

DOI:
https://doi.org/10.56845/rebs.v4i1.71Keywords:
anaerobic biofilm reactor, anaerobic digestion, organic loading rate, organic fraction of municipal solid waste, renewable energyAbstract
Inadequate management of Municipal Solid Waste (MSW) and the energy crisis due to dependence on fossil fuels (carbon and hydrocarbons) are growing problems in Latin American countries such as Mexico. These problems are caused by various factors, including the lack of infrastructure and the limited development of technologies focused on addressing these areas. In Mexico, between 37.55 and 43.84 million tons of MSW are generated annually, while 5,896 PJ of fossil fuels are produced in the same period, contributing strongly to environmental pollution due to inadequate management and procurement-use processes respectively. In order to mitigate these problems, it is necessary to propose dual-purpose strategies, such as anaerobic digestion, that can help in the treatment of the organic fraction of MSW (OFMSW) and at the same time producing biogas as a renewable energy source. For these reasons, the aim of this work was to evaluate the performance of an anaerobic biofilm reactor through increases in the Organic Loading Rate (OLR) using the liquid fraction of the OFMSW as a substrate for biogas production. An anaerobic biofilm reactor called the Anaerobic Hybrid Reactor (AHR) was used to carry out this stud. The performance of the AHR in four stages applying different OLR values from 5 to 21 gCOD/L.d was analyzed. Anaerobic biofilm formation, pH, %COD and %solids removal, alkalinity, biogas production, and methane yield were evaluated. After 119 days of reactor operation, 93.45% colonization of the inverse fluidized bed, 85% total and soluble COD and removals greater than 80% for TS and VS, alkalinity less than 0.3, around 20 L of biogas per day with methane yields of 0.31 LCH4 at STP/gCODrem were obtained. The use of high OLR allows a larger volume of OFMSW liquid fraction to be treated producing a greater quantity of biogas with an excellent methane yield, thus demonstrating the high efficiency of the AHR.References
Akunna, J. C. (2019). Anaerobic Wastewater Treatment and Biogas Plants. Taylor & Francis Group. First edition.
Alvarado-Lassman, A., Méndez-Contreras, J. M., Martínez-Sibaja, A., Rosas-Mendoza, E. S., & Vallejo-Cantú, N. A. (2016). Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes. Environmental Technology 3330.
Apanco-Rosas, V. (2018). Comparación del desempeño de un reactor anaerobio piloto en configuración en paralelo, con 2 diferentes sustratos. Tesis de Maestría. Instituto Tecnológico de Orizaba. México.
APHA. (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.
Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F. & Lens, P. (2014). Pretreatment methods to enhance anaerobic digestion of organic solid waste. APPLIED ENERGY 123: 143–56.
Arreola-Vargas, J., Snell-Castro, R., Rojo-Liera, N. M., González-Álvarez, V. & Méndez-Acosta, H. O. (2018). Effect of the organic loading rate on the performance and microbial populations during the anaerobic treatment of tequila vinasses in a pilot-scale packed bed reactor. J Chem Technol Biotechnol 93(2):591–99.
Bernard, O., Polit, M., Hadj-Sadok, Z., Pengov, M., Dochain, D., Estaben, M. & Labat, P. (2000). Advanced monitoring and control of anaerobic wastewater treatment plants: III-Software sensors and controllers for an anaerobic digester. In: 5th International Symposium in System Analysis and Computing in Water Quality Management, 3.65–3.72. Gent, Belgium.
Beyenal, H. & Lewandowski, Z. (2000). Combined effect of substrate concentration and flow velocity on effective diffusivity in biofilms. Water research. 34(2): 528-538.
Botello-Suárez, W. A., Da Silva-Vantini, J., Duda, R- M., Giachetto, P. F., Carrijo-Cintra, L., Tiraboschi Ferro, M. I. & Alves-De Oliveira, R. (2018). Predominance of syntrophic bacteria, Methanosaeta and Methanoculleus in a two-stage up-flow anaerobic sludge blanket reactor treating coffee processing wastewater at high organic loading rate. Bioresour Technol 268, 158–68.
Buffière, P., Bergeon, J. P. & Moletta, R. (2000). The inverse turbulent bed: a novel bioreactor for anaerobic treatment. Water Research, 34(2), 673-677.
Cecconet, D., Callegari, A. & Capodaglio, A.G. (2022). UASB Performance and Perspectives in Urban Wastewater Treatment at Sub-Mesophilic Operating Temperature. Water, 14(1), 115.
Cristaldi, A., Fiore, M., Zuccarello, P., Oliveri Conti, G., Grasso, A., Nicolosi, I., Copat, C. & Ferrante, M. (2020). Efficiency of Wastewater Treatment Plants (WWTPs) for Microplastic Removal: A Systematic Review. Int J Environ Res Public Health, 17(21), 8014.
Díaz-Trujillo, L. A. & Nápoles-Rivera, F. (2019). Optimization of biogas supply chain in Mexico considering economic and environmental aspects. Renewable Energy, 139, 1227–1240.
Doloman, A., Soboh, Y., Walters, A. J., Sims, R. C. & Miller, C. D. (2017). “Qualitative Analysis of Microbial Dynamics during Anaerobic Digestion of Microalgal Biomass in a UASB Reactor”. Int J Microbiol 2017(5291283):12.
El Sol de Orizaba. (2020). https://www.elsoldeorizaba.com.mx/local/se-inaugura-planta-ecori-ayuntamiento-firma-convenio-con-geocycle-medio-ambiente-basura-reciclaje-orizaba-5518152.html.
Foresti, E. (1994). Fundamentos de proceso de digestión anaerobia. III Taller y Seminario Latinoamericano sobre Tratamiento anaerobio de aguas residuales, Montevideo, Uruguay, 97-110.
Garbs, M. & Geldermann, J. (2018). Analysis of selected economic and environmental impacts of long-distance manure transports to biogas plants. Biomass and Bioenergy, 109(December 2017), 71–84. https://doi.org/10.1016/j.biombioe.2017.12.009
Gutiérrez, J. P. (2018). Situación actual y escenarios para el desarrollo del biogás en México hacia 2024 y 2030. Red Tematica De Bioenergia De Conacyt, 22.
Houbron, E. (2012). Methane yield and microscopic observation as monitoring biofilm behaviour parameters, during start up phase of anaerobic inverse fluidized bed reactor. Afr J Biotechnol 11(78), 14392–98.
Hussain A., Johain J. & Fawziea M. (2021). Effect of pH on biogas production during anaerobic digestion. Journal of University of Shanghai for Science and Technology, 23(8), 224-231.
Jáuregui-Jáuregui, J. A., Méndez-Acosta, H. O., González-Álvarez, V., Snell-Castro, R., Alcaraz-González, V. & Godon, J. J. (2014). Anaerobic treatment of tequila vinasses under seasonal operating conditions: Start-up, normal operation and restart-up after a long stop and starvation period. Bioresource Technology, 168, 33–40.
Karadag, D., Köroğlu, O., Ozkaya, B. & Cakmakci, M. (2015). A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater, Process Biochemistry, 50(2), 262-271.
Lebuhn, M., Weib, S., Munk, B. & Guebitz, G. M. (2015). Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. Biogas Sci Technol 1–200.
Lettinga, G., Roersma, R. & Grin, P. (1983). Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnol and Bioeng, 25(7), 1701–1723.
Liu, S., Cao, L., Xu, F., Yang, L., Li, Y. & Inalegwu, O. (2021). Chapter Five - Integration of algae cultivation to anaerobic digestion for biofuel and bioenergy production, Advances in Bioenergy, Elsevier, 6(1), 199-300,
Lohani, S. P. & Havukainen, J. (2018). Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. Waste Bioremediation, Energy, Environment, and Sustainability.
Lorenzo-Acosta, Y. & Obaya-Abreu, M. C. (2005). La digestión anaerobia. Aspectos teóricos. Parte I. ICIDCA. Sobre los Derivados de la Caña de Azúcar, 39(1, 2005), 35-48.
Mlaik, N., Khcharem, M., Kouas, M., Sayadi, S. & Khoufi, S. (2017). Improvement of anaerobic biodegradability of organic fraction of municipal solid waste by mechanical and thermochemical pretreatments. Inter J Environ Sci Technol.
Nava-Pacheco, D., Juárez-García, I.A., Landeta-Escamilla, O., Del Moral, S. & Rosas-Mendoza, E.S. (2020). Bioenergy potential from agroindustrial wastes of the state of Veracruz. Renewable Energy, Biomass & Sustainability (REB&S), 2(2), 1-6.
Okabe, S., Kuroda, H. & Watanabe, Y. (1998). Significance of biofilm structure on transport of inert particulates into biofilms. Water Science and Technology. 38(8,9): 163-170.
Ostrem M.K., Millrath K., & Themelis N.J. (2004). Combining anaerobic digestion and waste to energy. In: 12th North America waste to energy conference. Columbia University, New York.
Patel, B.B., Gundaliya, P., Patel, U. & Umeshkumar Khare, U. (2021). Hydrodynamics of hybrid upflow anaerobic sludge blanket reactors using tracer studies. Environmental Challenges, 5.
Rosas-Mendoza, E. S., Méndez-Contreras, J. M., Martínez-Sibaja, A., Vallejo-Cantú, N. A. & Alvarado-Lassman, A. (2018). Anaerobic digestion of citrus industry effluents using an Anaerobic Hybrid Reactor. Clean Technol Environ Policy 20(7), 1387–97.
SENER (Secretaría de Energía). (2020). Balance Nacional de Energía 2020. https://www.gob.mx/cms/uploads/attachment/file/707654/BALANCE_NACIONAL_ENERGIA_0403.pdf.
SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). (2017). Información sobre residuos sólidos urbanos. https://www.gob.mx/semarnat/acciones-y-programas/residuos-solidos-urbanos-rsu#:~:text=En%20M%C3%A9xico%20se%20generan%20diariamente,9.63%25%20de%20los%20residuos%20generados.
Trinet, F., Heim, R., Amar, D. & Chang, H. (1991). Study of biofilm and fluidization of bioparticles in a three-phase liquid fluidized-bed reactor. Water Science and Technology. 23, 1347-1354.
Utino, B.M.Y., Alves, I., Del Nery, V., Kimiko, S.I., Pozzi, E. & Rissato, M.H. (2022). Methane production in a UASB reactor from sugarcane vinasse: shutdown or exchanging substrate for molasses during the off-season? Journal of Water Process Engineering, 47.
Vega-De Kuyper, J. C. & Ramírez-Morales, S. (2014). Fuentes de energía, renovables y no renovables. Aplicaciones. México: Alfaomega.
Weber, B., Rojas Oropeza, M., Torres Bernal, M. & Pampillón González, L. (2012). Producción de biogás en México estado actual y perspectivas. Cuaderno Temático No. 5 Red Mexicana de Bioenergía, 48.
Wid, N. & Horan, N. J. 2018. Anaerobic digestion of screenings for biogas recovery. Springer Singapore.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Inés Adriana Juárez-García, Raúl Snell-Castro, Juan Manuel Méndez-Contreras, Norma Alejandra Vallejo-Cantú, Alejandro Alavarado-Lassman, Erik Samuel Rosas-Mendoza

This work is licensed under a Creative Commons Attribution 4.0 International License.