Power generation by means of a prototype microcell using bioethanol as fuel and clinoptilolite-type zeolite

PDF downloads: 130

Authors

  • José Daniel Baleón-Romero Faculty of Electronic Sciences, Renewable Energy, Buap, Puebla, Puebla, México
  • Martha Angélica Torres-Rodriguez Faculty of Electronic Sciences, Renewable Energy, Buap, Puebla, Puebla, México
  • Nabil Enriquez-Torres Faculty of Electronic Sciences, Renewable Energy, Buap, Puebla, Puebla, México
  • Nallely Téllez-Méndez Faculty of Electronic Sciences, Renewable Energy, Buap, Puebla, Puebla, México
  • Laura Alicia Paniagua-Solar Faculty of Electronic Sciences, Renewable Energy, Buap, Puebla, Puebla, México https://orcid.org/0000-0001-8961-1868
  • Jorge Cotzomi-Paleta Faculty of Physical and Mathematical Sciences, physics, Buap, Puebla, Puebla, México https://orcid.org/0000-0002-1132-871X
  • Enrique de la Fuente-Morales Faculty of Electronic Sciences, Renewable Energy, Buap, Puebla, Puebla, México

DOI:

https://doi.org/10.56845/rebs.v4i2.66

Keywords:

Bioethanol, renewable, fuel cell, electroreaction

Abstract

Currently, technological alternatives are being sought for the substitution of fossil fuels for different reasons.One of the most relevant is the protection of the environment, to have an improvement in this aspect, the generation of energy through clean sources is sought. The PEMFC (Proton Exchange Membrane Fuel Cell) type fuel cells are an excellent alternative for the generation of clean energy because the residues of the fuel cell are mainly water and heat. In the present work, clinoptilolite zeolite was used to produce clean energy by a fuel cell using bioethanol as fuel. Zeolite showed promising results when used in combination with carbon and hydrogel as a solid electrolyte. The material was characterized by scanning electron microscopy and x-ray electron microscopy. The result showed a maximum power of 0.00589241 mW in a surface of 900 mm2 , which is considered a positive result. The catalyst is functional to produce energy by an electrooxidation reaction using bioethanol in a fuel cell at a low cost compared to traditionally platinum-based catalysts.

References

Ackley, M. W., Rege, S. U., & Saxena, H. (2003). Application of natural zeolites in the purification and separation of gases. In Microporous and Mesoporous Materials (Vol. 61, Issues 1–3, pp. 25–42). Elsevier. https://doi.org/10.1016/S1387-1811(03)00353-6

Deng, R., Xia, Z., Sun, R., Wang, S., & Sun, G. (2020). Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells. Journal of Energy Chemistry, 43, 33–39. https://doi.org/10.1016/j.jechem.2019.07.015

Guerrero-Lemus, R., Martínez-Duart, J.M. (2013). Carbon Capture and Storage. In: Renewable Energies and CO2. Lecture Notes in Energy, vol 3. Springer, London. https://doi.org/10.1007/978-1-4471-4385-7_17

Hou, Y., Deng, H., Pan, F., Chen, W., Du, Q., & Jiao, K. (2019). Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell. Applied Energy, 253(April), 113561. https://doi.org/10.1016/j.apenergy.2019.113561

Krushensky, R. D., Cargill, S. M., & Raines, G. L. (1987). Development of Mineral , Energy , and Water Resources and Mitigation of Geologic Hazards in Central America Desarrollo de Recursos Minerals , Energia , y Agua y Mitigacion de Riesgos Geolo ’ gicos en Centroamerica Development cf Mineral , Energy , and Wat. 110–112.

Limlamthong, M., & Yip, A. C. K. (2019). Recent Advances in Zeolite-Encapsulated Metal Catalysts: A Suitable Catalyst Design for Catalytic Biomass Conversion. Bioresource Technology, 297(September 2019), 122488. https://doi.org/10.1016/j.biortech.2019.122488

M.Reháková; S.Čuvanová; M.Dzivák;J.Rimár;Z.Gaval’ová (2004). Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Science Direct, 8 (6), 397-404. https://doi.org/10.1016/j.cossms.2005.04.004

Pethaiah, S. S., Arunkumar, J., Ramos, M., Al-Jumaily, A., & Manivannan, N. (2016). The impact of anode design on fuel crossover of direct ethanol fuel cell. Bulletin of Materials Science, 39(1), 273–278. https://doi.org/10.1007/s12034-015-1130-6

Treacy, M. M. J., & Higgins, J. B. (2007). Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53067-7.X5470-7

Tsitsishvili, G. V., Andronikashvili, T. G., Kirov, G. R., & Filizova, L. D. (1992). Natural Zeolites. Ellis Horwood Limited.

M.Reháková; S.Čuvanová; M.Dzivák;J.Rimár;Z.Gaval’ová (2004). Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Science Direct, 8 (6), 397-404. https://doi.org/10.1016/j.cossms.2005.04.004

Downloads

Published

2022-11-28

How to Cite

Baleón-Romero, J. D., Torres-Rodriguez, M. A., Enriquez-Torres, N., Téllez-Méndez, N., Paniagua-Solar, L. A., Cotzomi-Paleta, J., & de la Fuente-Morales, E. (2022). Power generation by means of a prototype microcell using bioethanol as fuel and clinoptilolite-type zeolite. Renewable Energy, Biomass & Sustainability, 4(2), 44–51. https://doi.org/10.56845/rebs.v4i2.66

Issue

Section

Original Articles