Heating and Cooling with Heat Pumps – Projects developed in Mexico

DOI:
https://doi.org/10.56845/rebs.v3i2.59Keywords:
heat pumps, geothermal, aerothermal, heating, coolingAbstract
This article presents extensive research work on geothermal and aerothermal heat pump systems developed in Mexico. Seven systems are presented: (a) water-water geothermal heat pump for a kindergarten and a water-air and water-water combo geothermal heat pumps for a Hospital for the Mexican Social Security Institute (IMSS) at Los Humeros community in Puebla, both systems working for heating; (b) three water-air geothermal heat pumps for heating/cooling for a laboratory complex at Mexicali B.C.; (c) one water-air geothermal heat pump for cooling for a meeting room at Cuernavaca Morelos; (d) two water-water geothermal heat pumps for pool heating at a Sports Club, and four air-water aerothermal heat pumps for cooling/heating and water heating at a hotel in Aguascalientes, Aguascalientes; and (e) a hybrid system composed of two air-water aerothermal heat pumps and a photovoltaic system in León, Guanajuato.References
AFEC. (2014). Asociación de Fabricantes de equipos de climatización. España. ISBN:978-84-606-5447-6.
Athresh, A. P., Al-Habaibeh, A., & Parker, K. (2016). The design and evaluation of an open loop ground source heat pump operating in an ochre-rich coal mine water environment. International Journal of Coal Geology, 164, 69-76.
Banks, D. (2012). An introduction to thermogeology: ground source heating and cooling. John Wiley & Sons.
De Buen, O. (2005). Consumo de energía en los sectores residencial y comercial en México. Disponible en www.funtener.org/pdfs/Presentacion1-CCA-EV.pdf
Figueroa, A., I. Marincic, M. Ochoa, y J. Rojas (2010). Energía en edificaciones. En: Estrada, C., e Islas J. (Eds.), Energías Alternas: Propuesta deinvestigación y desarrollo tecnológico para México. Academia Mexicana de Ciencias, pp. 83-89.
Fridleifsson, I. B., Bertani, R., Huenges, E., Lund, J. W., Ragnarsson, A., & Rybach, L. (2008). The possible role and contribution ofgeothermal energy to the mitigation of climate change. In IPCC scoping meeting on renewable energy sources, proceedings, Luebeck,Germany (Vol. 20, No. 25, pp. 59-80). Citeseer.
García-Gutiérrez, A., Rivas-Cruz, F., & Torres-Luna, V. (2017). Bombas de Calor Geotérmicas para acondicionamiento de espacios habitacionales y comerciales: Proyecto 13 del CeMIE-Geo. XXII Congreso Anual de la Asociación Geotérmica Mexicana.
Gutiérrez, A. G., & Estrella, I. M. (2012). Estado actual de desarrollo de las Bombas de Calor Geotérmico. Geotermia, 58.
Gutiérrez-Negrín, L. C., Canchola Félix, I., Romo-Jones, J. M., & Quijano-León, J. L. (2020). Geothermal energy in Mexico: update and perspectives. In Proceedings, Proceedings World Geothermal Congress.
Gultekin, A., Aydin, M., & Sisman, A. (2016). Thermal performance analysis of multiple borehole heat exchangers. Energy Conversion andManagement, 122, 544-551.
IDEA (2014). Síntesis del Estudio Parque de Bombas de Calor en España. www.idae.es. España
Kurevija, T., & Strpić, K. (2018). Hydraulic and thermogeological design differences between two-loop vertical and inclined coaxial borehole heat exchangers. Renewable energy, 117, 314-323.
Kovačević, M. S., Bačić, M., & Arapov, I. (2013). Possibilities of underground engineering for the use of shallow geothermal energy. Gradevinar, 64(12), 1019-1028.
Loveridge, F. (2012). The thermal performance of foundation piles used as heat exchangers in ground energy systems (Doctoral dissertation, University of Southampton).