Evaluation of the extraction of cellulose fibers from banana pseudostems with potential use in the paper industry

DOI:
https://doi.org/10.56845/rebs.v3i1.33Keywords:
banana pseudostem, cellulose fibers, paper industryAbstract
Cellulose fibers were obtained from banana pseudostem residues by two different chemical routes: 30% sodium hydroxide and 8% hydrogen peroxide. The average yields obtained were 24.4% and 49.3%, respectively. Additionally, according to the SEM results, more fibrillous material is obtained under alkaline conditions. On the other hand, XRD diffractograms of the materials obtained by both methods, show similarities, however, a peak in 2θ = 16 ° in the material treated with H2O2, suggests that the material that was not completely degraded and therefore concluding greater effectiveness with the alkali treatment. Thus, the results obtained to date are not conclusive, therefore, the fibers obtained are still characterized by other complementary SEM analyzes and other techniques to define their dimensions and morphology with greater precision and from these results determine the possible products of the paper industry for which said fibers could be used.References
Agr, C., & Marzo, F. (2020). Cadena de plátano.
Arafat, K., Nayeem, J., Quadery, A., Quaiyyum, M., & Jahan, M. S. (2018). Handmade paper from waste banana fibre. Bangladesh Journal of Scientific and Industrial Research, 53(2), 83–88. https://doi.org/10.3329/bjsir.v53i2.36668
Cordeiro, N., Mendona, C., Pothan, L. A., & Varma, A. (2012). Monitoring surface properties evolution of thermochemically modified cellulose nanofibres from banana pseudo-stem. Carbohydrate Polymers, 88(1), 125–131. https://doi.org/10.1016/j.carbpol.2011.11.077
Elanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., & Guthrie, J. T. (2010). Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers, 80(3), 852–859. https://doi.org/10.1016/j.carbpol.2009.12.043
Flores, J. A., & Qui, G. R. (2018). LIGNOCELULÓSICOS STUDY OF KINETICS IN THERMOGRAVIMETRIC PROCESSES OF LIGNOCELLULOSIC MATERIALS. 20(2), 221–238. https://doi.org/10.4067/S0718-221X2018005002601
Molina-Ramírez, C., Cañas-Gutiérrez, A., Castro, C., Zuluaga, R., & Gañán, P. (2020). Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium. Carbohydrate Polymers, 240(January), 116341. https://doi.org/10.1016/j.carbpol.2020.116341
Pelissari, F. M., Sobral, P. J. D. A., & Menegalli, F. C. (2014). Isolation and characterization of cellulose nanofibers from banana peels. Cellulose, 21(1), 417–432. https://doi.org/10.1007/s10570-013-0138-6
Ramdhonee, A., & Jeetah, P. (2017a). Journal of Environmental Chemical Engineering Production of wrapping paper from banana fi bres. Journal of Environmental Chemical Engineering, 5(5), 4298–4306. https://doi.org/10.1016/j.jece.2017.08.011
Ramdhonee, A., & Jeetah, P. (2017b). Production of wrapping paper from banana fibres. Journal of Environmental Chemical Engineering, 5(5), 4298–4306. https://doi.org/10.1016/j.jece.2017.08.011
Rueda-ordóñez, Y., & Tannous, K. (2017). aplicando un esquema de reacciones paralelas independientes Kinetic analysis of biomass thermal decomposition applying a scheme of independent parallel reactions. 16(2), 119–127.
Rueda Ordóñez, Y. J., & Tannous, K. K. (2017). Análisis cinético de la descomposición térmica de biomasas aplicando un esquema de reacciones paralelas independientes. Revista UIS Ingenierías, 16(2), 119–128. https://doi.org/10.18273/revuin.v16n2-2017011
Sango, T., Cheumani Yona, A. M., Duchatel, L., Marin, A., Kor Ndikontar, M., Joly, N., & Lefebvre, J. M. (2018). Step–wise multi–scale deconstruction of banana pseudo–stem (Musa acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications. Industrial Crops and Products, 122(June), 657–668. https://doi.org/10.1016/j.indcrop.2018.06.050
Sharma, M., Aguado, R., Murtinho, D., Valente, A. J. M., Mendes De Sousa, A. P., & Ferreira, P. J. T. (2020). A review on cationic starch and nanocellulose as paper coating components. International Journal of Biological Macromolecules, 162, 578–598. https://doi.org/10.1016/j.ijbiomac.2020.06.131
Shimizu, F. L., Monteiro, P. Q., Ghiraldi, P. H. C., Melati, R. B., Pagnocca, F. C., Souza, W. de, Sant’Anna, C., & Brienzo, M. (2018). Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Industrial Crops and Products, 115(June 2017), 62–68. https://doi.org/10.1016/j.indcrop.2018.02.024
Souza, C. H. S., Gonc, M., Vieira, M. F., & Neves, S. (2020). Steam-exploded fibers of almond tree leaves as reinforcement of novel recycled polypropylene composites. 9(5), 11791–11800. https://doi.org/10.1016/j.jmrt.2020.08.069
Tibolla, H., Pelissari, F., Rodrigues, M., & Menegalli, F. C. (2016). Cellulose nanofibers produced from banana peel by enzymatic treatment: Study of process conditions. Industrial Crops and Products, 95. https://doi.org/10.1016/j.indcrop.2016.11.035
Yautepec-, C. (2016). Investigación y Desarrollo en Ciencia y Tecnología de Alimentos NANOCELULOSA OBTENIDA DE RESIDUOS AGROINDUSTRIALES DEL CULTIVO DE PLÁTANO MACHO ( Musa paradisiaca L.). 1(2), 301–306.