Removal of organic matter during adaptation of Nannochloropsis oculata in livestock waste

PDF downloads: 170

Authors

DOI:

https://doi.org/10.56845/rebs.v5i2.93

Keywords:

Nannochloropsis oculata, pig manure, poultry wastewater

Abstract

Microalgae, like plants, contribute significantly to the development of the oxygen biogeochemical cycle due to their high photosynthetic efficiency. In addition, they provide high yields of polyunsaturated fatty acids, sterols, proteins, terpenoids, and pigments, among others. Therefore, different species of microalgae have been studied and used on a laboratory scale to carry out processes such as wastewater treatment or aerobic bioconversion, which are presented as sustainable and viable alternatives for the treatment and recovery of organic waste (OW), usually rich in carbohydrates, lipids and proteins. In the present investigation, the removal of organic matter was evaluated during the adaptation of Nannochloropsis oculata in residues of poultry wastewater and swine origin, obtained from technical and semi-technical plants, respectively, located in the high mountain zone of the state of Veracruz, Mexico. The experiment was carried out in 250 mL discontinuous photobioreactors with a working volume of 200 mL, where 3 inoculum-substrate ratios were studied for each organic residue: 10, 15 and 20% inoculum in poultry wastewater (PWW) and 30, 50 and 70% inoculum in pig manure (PM). In addition, the conditions of temperature (20 ± 2 °C), illumination (2000 lx), photoperiod of 12/12 (light/dark) and continuous aeration were controlled. It was shown that N. oculata can tolerate alkaline conditions of pH ≥ 10 and contributes to the reduction of soluble organic matter in OW. PWW and PM were found to be viable media for the survival of N. oculata. Finally, regarding the inoculum concentrations studied, the most appropriate were 10% for PWW and 70% for PM.

References

Aksu, M., Tanattı, N. P., Erden, B., & Şengil, İ. A. (2021). Investigation of microalgal treatment for poultry slaughterhouse wastewater after the dissolved air flotation unit. Environmental Research and Technology, 4(2), 140–144. https://doi.org/10.35208/ert.845761. DOI: https://doi.org/10.35208/ert.845761

Ammar, S. H., Khadim, H. J., & Mohamed, A. I. (2018). Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production. Environmental Technology and Innovation, 10, 132–142, https://doi.org/10.1016/j.eti.2018.02.002. DOI: https://doi.org/10.1016/j.eti.2018.02.002

APHA, AWWA, y WEF. 2017. Standard Methods for the Examination of Water and Wastewater. American Public Health Association. Washington, DC.

Ashour, M., Elshobary, M. E., El-Shenody, R., Kamil, A. W., & Abomohra, A. E. F. (2019). Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass and Bioenergy, 120, 439–447, https://doi.org/10.1016/j.biombioe.2018.12.009. DOI: https://doi.org/10.1016/j.biombioe.2018.12.009

Askari, M., Jafari, A., Esmaeilzadeh, F., Khorram, M., & Mohammadi, A. H. (2022). Kinetic Study on Nannochloropsis Oculata’s Lipid Extraction Using Supercritical CO2 and n-Hexane for Biodiesel Production. ACS Omega, 7(27), 23027–23040. https://doi.org/10.1021/acsomega.1c04029. DOI: https://doi.org/10.1021/acsomega.1c04029

Bourlieu, C., Astruc, T., Barbe, S., Berrin, J. G., Bonnin, E., Boutrou, R. & Paës, G. (2020). Enzymes to unravel bioproducts architecture. Biotechnology Advances. Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2020.107546. DOI: https://doi.org/10.1016/j.biotechadv.2020.107546

Chua, E. T., & Schenk, P. M. (2017). A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresource technology, 244, 1416-1424. https://doi.org/10.1016/j.biortech.2017.05.124. DOI: https://doi.org/10.1016/j.biortech.2017.05.124

Dhanya, B. S., Mishra, A., Chandel, A. K., & Verma, M. L. (2020). Development of sustainable approaches for converting the organic waste to bioenergy. Science of the Total Environment, 723, https://doi.org/10.1016/j.scitotenv.2020.138109. DOI: https://doi.org/10.1016/j.scitotenv.2020.138109

Estrada-García J., Hernández-Aguilar E., Romero-Mota D. I., & Méndez-Contreras J. M. (2023). Influence of anaerobic biotransformation process of agro‑industrial waste with Lactobacillus acidophilus on the rheological parameters: case of study of pig manure. Archives of Microbiology, 205(3), 99, https://doi.org/10.1007/s00203-023-03437-8. DOI: https://doi.org/10.1007/s00203-023-03437-8

Guillard, R.R.L. & Rhyter, J.H. (1962) Studies on marine planktonic diatoms I. Cyclotella nana Hustedt, Detonula confervacea (Cleve) Grans. Canadian Journal of Microbiology, 8, 229-239. DOI: https://doi.org/10.1139/m62-029

Gutiérrez-Casiano N., Hernández-Aguilar E., Alvarado-Lassman A. & Méndez-Contreras J., M. (2022) Removal of carbon and nitrogen in wastewater from a poultry processing plant in a photobioreactor cultivated with the microalga Chlorella vulgaris, Journal of Environmental Science and Health, Part A, 57(7), 620-633, https://10.1080/10934529.2022.2096986. DOI: https://doi.org/10.1080/10934529.2022.2096986

Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgae, culture and benefits. Revista de Biología Marina y Oceanografía, 49(2), 157–173. DOI: https://doi.org/10.4067/S0718-19572014000200001

Jacob, J. M., Ravindran, R., Narayanan, M., Samuel, S. M., Pugazhendhi, A., & Kumar, G. (2021). Microalgae: A prospective low cost green alternative for nanoparticle synthesis. Current Opinion in Environmental Science & Health, 20, 100163. https://doi.org/10.1016/j.coesh.2019.12.005. DOI: https://doi.org/10.1016/j.coesh.2019.12.005

Jones, E. R., Van Vliet, M. T. H., Qadir, M., & Bierkens, M. F. P. (2021). Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth System Science Data, 13(2), 237–254. https://doi.org/10.5194/essd-13-237-2021. DOI: https://doi.org/10.5194/essd-13-237-2021

Kagan, M. L., & Matulka, R. A. (2015). Safety assessment of the microalgae Nannochloropsis oculata. Toxicology Reports, 2, 617–623, https://doi.org/10.1016/j.toxrep.2015.03.008. DOI: https://doi.org/10.1016/j.toxrep.2015.03.008

Li, L.H., Li, Y.L., & Hong Y. (2023). New insights into the microalgal culture using kitchen waste: Enzyme pretreatment and mixed microalgae self-flocculation. Biochemical Engineering Journal, 195, 108904, https://doi.org/10.1016/j.bej.2023.108904. DOI: https://doi.org/10.1016/j.bej.2023.108904

Martínez-Macías, R., Meza-Escalante, E., Serrano-Palacios, D., Gortárs-Moroyoqui, P., Ruíz-Ruíz, P. E., & Ulloa-Mercado, G. (2018). Effect of fed-batch and semicontinuous regimen on Nannochloropsis oculata grown in different culture media to high-value products. Journal of Chemical Technology and Biotechnology, 93(2), 585–590, https://doi.org/10.1002/jctb.5405. DOI: https://doi.org/10.1002/jctb.5405

Mashur, M., Bilad, M. R., Hunaepi, H., Huda, N., & Roslan, J. (2021). Formulation of organic wastes as growth media for cultivation of earthworm nutrient-rich Eisenia Foetida. Sustainability, 13(18), 10322. https://doi.org/10.3390/su131810322. DOI: https://doi.org/10.3390/su131810322

McGauran, T., Dunne, N., Smyth, B. M., & Cunningham, E. (2021). Feasibility of the use of poultry waste as polymer additives and implications for energy, cost and carbon. Journal of Cleaner Production, 291. https://doi.org/10.1016/j.jclepro.2021.125948. DOI: https://doi.org/10.1016/j.jclepro.2021.125948

Menegazzo, M. L., & Fonseca, G. G. (2019). Biomass recovery and lipid extraction processes for microalgae biofuels production: A review. Renewable and Sustainable Energy Reviews, 107, 87-107.https://doi.org/10.1016/j.rser.2019.01.064. DOI: https://doi.org/10.1016/j.rser.2019.01.064

Liang, M. H., Wang, L., Wang, Q., Zhu, J., & Jiang, J. G. (2019). High-value bioproducts from microalgae: strategies and progress. Critical reviews in food science and nutrition, 59(15), 2423-2441. https://doi.org/10.1080/10408398.2018.1455030. DOI: https://doi.org/10.1080/10408398.2018.1455030

Ng, H. S., Kee, P. E., Yim, H. S., Chen, P. T., Wei, Y. H., & Lan, J. C. W. (2020). Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource technology, 302, 122889. https://doi.org/10.1016/j.biortech.2020.122889. DOI: https://doi.org/10.1016/j.biortech.2020.122889

Njoya, M., Basitere, M., & Ntwampe, S. K. O. (2019). Analysis of the characteristics of poultry slaughterhouse wastewater (PSW) and its treatability. Water Practice and Technology, 14(4), 959–970. https://doi.org/10.2166/wpt.2019.077. DOI: https://doi.org/10.2166/wpt.2019.077

NMX-AA-030/1-SCFI-2012. Análisis de agua - medición de la Demanda Química de Oxígeno en aguas naturales, residuales y residuales tratadas. - método de prueba - parte 1 - método de reflujo abierto.

NMX-AA-3-1980. NORMA MEXICANA "Aguas residuales. - muestreo"

NOM-004-SEMARNAT-2002. Norma Oficial Mexicana, Protección Ambiental. Lodos y biosólidos. Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final.

Pachacama, L., Tirado, J. O., Duchicela, J., Manjunatha, B., Kundapur, R. R., & Rajeswari, B. (2016). Evaluation of microalgae’s (Chlorella sp. and Synechocystis sp.) pollutant removal property: Pig effluent as a live stock discharge. Journal of Applied Pharmaceutical Science, 6(8), 135–141. https://doi.org/10.7324/JAPS.2016.60821. DOI: https://doi.org/10.7324/JAPS.2016.60821

Salbitani, G., Del Prete, F., Carfagna, S., Sansone, G., & Barone, C. M. (2021). Enhancement of pigments production by nannochloropsis oculata cells in response to bicarbonate supply. Sustainability, 13(21), 11904. https://doi.org/10.3390/su132111904. DOI: https://doi.org/10.3390/su132111904

Stiborova, H., Kronusova, O., Kastanek, P., Brazdova, L., Lovecka, P., Jiru, M., … Demnerova, K. (2020). Waste products from the poultry industry: a source of high-value dietary supplements. Journal of Chemical Technology and Biotechnology, 95(4), 985–992. https://doi.org/10.1002/jctb.6131. DOI: https://doi.org/10.1002/jctb.6131

Su, M., Dell’orto, M., Scaglia, B., D’imporzano, G., Bani, A., & Adani, F. (2022). Growth Performance, Biochemical Composition and Nutrient Recovery Ability of Twelve Microalgae Consortia Isolated from Various Local Organic Wastes Grown on Nano-Filtered Pig Slurry. Molecules, 27(2), https://doi.org/10.3390/molecules27020422. DOI: https://doi.org/10.3390/molecules27020422

Thoré, E. S., Schoeters, F., De Cuyper, A., Vleugels, R., Noyens, I., Bleyen, P., & Van Miert, S. (2021). Waste is the new wealth–recovering resources from poultry wastewater for multifunctional microalgae feedstock. Frontiers in Environmental Science, 253. https://doi.org/10.3389/fenvs.2021.679917. DOI: https://doi.org/10.3389/fenvs.2021.679917

Torky, M., Dahy, G., & Hassanein, A. E. (2023). GH2_MobileNet: Deep learning approach for predicting green hydrogen production from organic waste mixtures. Applied Soft Computing, 138, 110215, https://doi.org/10.1016/j.asoc.2023.110215. DOI: https://doi.org/10.1016/j.asoc.2023.110215

Tran, H. D., Ong, B. N., Ngo, V. T., Tran, D. L., Nguyen, T. C., Tran-Thi, B. H., & Melkonian, M. (2022). New Angled Twin–layer Porous Substrate Photobioreactors for Cultivation of Nannochloropsis oculata. Protist, 173(6), https://doi.org/10.1016/j.protis.2022.125914. DOI: https://doi.org/10.1016/j.protis.2022.125914

Vladić, J., Jazić, J. M., Ferreira, A., Maletić, S., Cvetković, D., Agbaba, J., Vidović, S & Gouveia, L. (2023). Application of Green Technology to Extract Clean and Safe Bioactive Compounds from Tetradesmus obliquus Biomass Grown in Poultry Wastewater. Molecules, 28(5), 2397. https://doi.org/10.3390/molecules28052397. DOI: https://doi.org/10.3390/molecules28052397

Xie, S., Tran, H. T., Pu, M., & Zhang, T. (2023). Transformation characteristics of organic matter and phosphorus in composting processes of agricultural organic waste: Research trends. Materials Science for Energy Technologies, 6, 331-342, https://doi.org/10.1016/j.mset.2023.02.006. DOI: https://doi.org/10.1016/j.mset.2023.02.006

Yaakob, M. A., Mohamed, R. M. S. R., Al-Gheethi, A. A. S., & Kassim, A. H. M. (2018). Characteristics of chicken slaughterhouse wastewater. Chemical Engineering Transactions, 63, 637-642. https://doi.org/10.3303/CET1863107.

Downloads

Published

2023-12-30

How to Cite

Sales-Pérez, R. E., Sales-Chávez, R. M., Romero-Mota, D. I., Estrada-García , J., & Méndez-Contreras, J. M. (2023). Removal of organic matter during adaptation of Nannochloropsis oculata in livestock waste. Renewable Energy, Biomass & Sustainability, 5(2), 32–39. https://doi.org/10.56845/rebs.v5i2.93

Issue

Section

Original Articles