Technoeconomic analysis of broccoli biorefineries for polyphenol extraction and biobutanol production

DOI:
https://doi.org/10.56845/rebs.v4i1.70Keywords:
biofuels, biobutanol, bioprocesses, biocircularity, sustainabilityAbstract
Fossil resources dominate the energy supply. In 2019, the total energy supply worldwide accounted for 606 exajoules (EJ), of which fossil fuels (oil, coal, and gas) had a share of 81% (490 EJ). The biorefinery concept proposes the synthesis of renewable energies as an alternative to fossil carburants. As a second-generation biofuel, biobutanol has outstanding characteristics and can be obtained from agricultural residues and organic wastes; however, its bioprocessing is not economically feasible using current methodologies. In 2021, the global production of broccoli (Brassica oleracea var. Italica) was 25.5 million tons; being the fifth top producer, Mexico generated 687,000 tons of this vegetable. In this work we propose a production design for the synthesis of biobutanol and the recovery of valuable byproducts, like high-value polyphenolic compounds, from broccoli residues, abundant in the state of Guanajuato, Mexico. For the transformation of the substrate a biochemical matrix was proposed for its composition, as well as a biotechnological route that follows a general path with the acid pretreatment of biomass, enzymatic hydrolysis, and acetone-biobutanol-ethanol (ABE) fermentation using anaerobic bacteria. The outlined biorefinery integrates conventional methods in three methodological pathways and a hybrid model for the downstream process. With the aim of visualizing the global economic performance and evaluating a possible reduction in production costs, we performed a technoeconomic analysis of the designed second generation biorefinery plant. The economic evaluation was carried out using SuperPro Designer® V 12.0. The results confirm the enormous dependence that this type of biorefinery suffers from energy demands. We found that by implementing strategic adaptations to the downstream process operating costs can be considerably reduced. However, to achieve full financial efficiency in the production of biobutanol from broccoli residues, it is necessary to deepen the research and development of innovative methods to efficiently separate and purify the final products, as well as novel methodologies for the biotransformation of the described lignocellulosic biomass along the entire technological route. We also found that there is a large opportunity in the valorization of the plentiful broccoli residues generated in the Guanajuato region.
References
Alavijeh Masih K & Karimi Keikhosro. (2019). Biobutanol production from corn stover in the US. Industrial Crops and Products. 129. 641-653. https://doi.org/10.1016/j.indcrop.2018.12.054.
An A, Li W, Liu Q (2017). A two-stage pretreatment using acidic dioxane followed by dilute hydrochloric acid on sugar production from corn stover, RSC Adv. 7. 32452–32460, https://doi.org/10.1039/C7RA05280D.
Baldoni, Edoardo; Reumerman, Patrick; Parisi, Claudia; Platt, Richard; González Hermoso, Hugo; Vikla, Kaisa; Vos, John; M'barek, Robert (2021): Chemical and material biorefineries in the EU. European Commission, Joint Research Centre (JRC) [Dataset] PID: http://data.europa.eu/89h/24e98d11-ef06-4233-8f69-1e123938e891
Bankar Sandip, Survase Shrikant, Ojamo Heikki & Granström Tom. (2013). Biobutanol: The outlook of an academic and industrialist. RSC Advances. 3. 24734. https://doi.org/10.1039/c3ra43011a.
Bello Sara, Feijoo Gumersindo & Moreira Maria. (2019). Energy Footprint of Biorefinery Schemes. 1-45. https://doi.org/10.1007/978-981-13-2466-6_1
Berndtsson E, Andersson R, Johansson E, Olsson ME. 2020. Side Streams of Broccoli Leaves: A Climate Smart and Healthy Food Ingredient. Int J Environ Res Public Health. 2020 Apr 1;17(7):2406. doi: https://doi.org/10.3390/ijerph17072406. PMID: 32244813; PMCID: PMC7178181.
Bhandari Shiva & Kwak Jung-Ho. (2015). Chemical Composition and Antioxidant Activity in Different Tissues of Brassica Vegetables. Molecules (Basel, Switzerland). 20. 1228-43. https://doi.org/10.3390/molecules20011228.
Birgen C, Degnes K F, Markussen S, Wentzel A and Sletta H. (2021). Butanol production from lignocellulosic sugars by Clostridium beijerinckii in microbioreactors. Biotechnology for Biofuels 14-34. https://doi.org/10.1186/s13068-021-01886-1.
Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Ivančić Šantek M, Komes D, Novak S, Šantek B. 2018. Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review. Food Technol Biotechnol. Sep; 56(3). 289-311. https://doi.org/10.17113/ftb.56.03.18.5546. PMID: 30510474; PMCID: PMC6233010.
Campas Baypoli ON, Sánchez Machado DI, Bueno Solano C, Núñez Gastélum JA, Reyes Moreno C, López C J. 2009. Biochemical composition and physicochemical properties of broccoli flours. Int J Food Sci Nutr. 60 Suppl 4:163-73. https://doi.org/10.1080/09637480802702015. PMID: 19259885.
Chemanalyst. (2022). Web site: https://www.chemanalyst.com/
Civelek Yoruklu Hulya, Koroglu Emre Oguz, Demir Ahmet, and Ozkaya Bestami. 2019. Chapter 5.2 - The Electromotive-Induced Regulation of Anaerobic Fermentation: Electrofermentation, Editor(s): S. Venkata Mohan, Sunita Varjani, Ashok Pandey, In Biomass, Biofuels and Biochemicals, Microbial Electrochemical Technology, Elsevier, 739-756, ISBN 9780444640529, https://doi.org/10.1016/B978-0-444-64052-9.00030-3.
Celtic Renewables (June 17, 2022). Celtic Renewables win Chemical Industry Association’s Sustainability Award. https://www.celtic-renewables.com/celtic-renewables-win-chemical-industry-associations-sustainability-award/
De Buck V, Polanska Monika and Van Impe Jan. (2020). Modeling Biowaste Biorefineries: A Review. Frontiers in Sustainable Food Systems. 4(11). https://doi.org/10.3389/fsufs.2020.00011.
Dong Jin-J, Han R-Z, Xu G-C, Gong L, Xing W-R, Ni Ye. (2018). Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864, Bioresource Technology, 259, Pages 40-45, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2018.02.098.
European Commission, Directorate-General for Research and Innovation, Platt, R., Bauen, A., Reumerman, P. (2021). EU biorefinery outlook to 2030: studies on support to research and innovation policy in the area of bio-based products and services, Publications Office. https://data.europa.eu/doi/10.2777/103465.
FAO; Food and Agriculture Organization of the United Nations. (2017). Global Initiative on Food Loss and Waste Reduction. Italy. Available in http://www.fao.org/3/i7657e/i7657e.pdf.
Guo Yuan, Liu Yi, Guan Mingdong, Tang Hongchi, Wang Zilong, Lin Lihua & Pang Hao. 2022. Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects. RSC Adv., 12, 18848–18863. http://dx.doi.org/10.1039/D1RA09396G.
Haigh, K.F., Petersen, A.M., Gottumukkala, L., Mandegari, M., Naleli, K. and Görgens, J.F. (2018), Simulation and comparison of processes for biobutanol production from lignocellulose via ABE fermentation. Biofuels, Bioprod. Bioref., 12: 1023-1036. https://doi.org/10.1002/bbb.1917.
IEA (2021). Transport Biofuels, IEA, Paris https://www.iea.org/reports/transport-biofuels.
IRENA (2022). Bioenergy for the energy transition: Ensuring sustainability and overcoming barriers, International Renewable Energy Agency, Abu Dhabi. ISBN: 978-92-9260-451-6
IVEMNSA, (2022). Manufacturing in Mexico, Web site: https://www.ivemsa.com/
Jiang Yujia, Lv Yang, Wu Ruofan, Sui Yuan, Chen Chong, Xin Fengxue, Zhou Jay, Weiliang Dong & Jiang Min. (2019). Current status and perspectives on biobutanol production using lignocellulosic feedstocks. Bioresource Technology Reports. 7. https://doi.org/100245. 10.1016/j.biteb.2019.100245.
Jönsson Leif & Martín M C. (2015). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource technology. 199. https://doi.org/10.1016/j.biortech.2015.10.009.
Jovanović A, Petrović P, Ðordjevic V, Zdunić G, Savikin K & Branko B. (2017). Polyphenols extraction from plant sources. Lekovite sirovine. 45-49. https://doi.org/10.5937/leksir1737045J.
Kaminski W, Tomczak Elwira & Górak Andrzej. (2011). Biobutanol - Production and purification methods. Ecological Chemistry and Engineering S. 18. 31-37
Kraemer K, Harwardt A, Bronneberg R & Marquardt W. (2011). Separation of butanol from acetone-butanolethanol fermentation by a hybrid extraction distillation process. 20th European Symposium on Computer Aided Process Engineering – ESCAPE20. S. Pierucci and G. Buzzi Ferraris (Editors)
Kujawska A, Kujawski J, Bryjak M, Kujawski W. (2015). ABE fermentation products recovery methods—A review, Renewable and Sustainable Energy Reviews, 48, Pages 648-661, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2015.04.028.
Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V & Verma P. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept, Fuel Processing Tech, 199, 106244, ISSN 0378-3820, https://doi.org/10.1016/j. fuproc.2019.106244.
Kushwaha, Deepika, Srivastava Neha, Mishra Ishita, Upadhyay Siddh & Mishra, Pradeep. (2018). Recent trends in biobutanol production. Reviews in Chemical Engineering. 35. https://doi.org/10.1515/revce-2017-0041.
Li Guang, Chang Yuxue, Chen Lei, Lis Fan, Ma Shuqi, Wang Feng & Zhang Yulong. 2020. Process design and economic assessment of butanol production from lignocellulosic biomass via chemical looping gasification, Bioresource Technology, 316, 123906, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2020.123906.
Li Hao, Wang Haoyang, Darwesh Osama M, Du Jingjing, Liu Shan, Li Chunli & Jing Fang. 2021. Separation of biobutanol from ABE fermentation broth using lignin as adsorbent: A totally sustainable approach with effective utilization of lignocellulose. International Journal of Biological Macromolecules, 174, Pages 11-21, ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2021.01.095.
Liu Mengpei, Zhang Lihua, Ser Suk, Cumming Jonathan & Ku Kang-Mo. (2018). Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization. Molecules. 23. 900. https://doi.org/10.3390/molecules23040900.
Liu Q, Li Q, Ma Q, An S, Li A, Jameel H, Chang H. (2016). Pretreatment of corn stover for sugar production using a two-stage dilute acid followed by wet-milling pretreatment process, Bioresour. Technol. 211 435–442, https://doi.org/10.1016/j.biortech.2016.03.131.
Liu Yuchen, Yuan Yan, Ramya Ganesan, Singh Shiv Mohan, Chi Nguyen Thuy Lan, Pugazhendhi Arivalagan, Xia Changlei & Mathimani Thangavel. 2022. A review on the promising fuel of the future – Biobutanol; the hindrances and future perspectives. Fuel, 327, 125166, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2022.125166.
Lopez Arenas T., Rathi P., Ramirez Menez E. and Sales Cruz M. (2010), Acid pretreatment of lignocellulosic biomass: Steady state and dynamic analysis, Chemical Engineering Transactions, 21, 445-450. https://doi.org/10.3303/CET1021075.
Madhu and Kochhar Anita. (2104). Proximate composition, available carbohydrates, dietary fiber and anti-nutritional factors of Broccoli (Brassica oleracea L. Var. Italica Plenck) leaf and floret powder. Bioscience Discovery, 5(1):45-49, Jan. ISSN: 2231-024X Online
Mahapatra Manoj & Kumar Arvind. (2017). A Short Review on Biobutanol, a Second Generation Biofuel Production from Lignocellulosic Biomass. Journal of Clean Energy Technologies. 5. 27-30. https://doi.org/10.18178/JOCET.2017.5.1.338.
Maroun R G, Rajha H N, El Darra N, El Kantar S, Chacar S, Debs E, Vorobiev E, Louka N, (2018). 8 - Emerging technologies for the extraction of polyphenols from natural sources, Editor(s): Charis M. Galanakis, Polyphenols: Properties, Recovery, and Applications, Woodhead Publishing, 265-293, ISBN 9780128135723, https://doi.org/10.1016/B978-0-12-813572-3.00008-7.
Meramo Samir, González Delgado Angel, Rehmann Lars, Quiñones Bolaños Edgar & Mehvar Mehrab. (2021). Comparative analysis of biorefinery designs based on acetone-butanol-ethanol fermentation under exergetic, techno-economic, and sensitivity analyses towards a sustainability perspective. Journal of Cleaner Production. 298. 126761. https://doi.org/10.1016/j.jclepro.2021.126761.
Molina-Guerrero C E, Valdez Vazquez I, Sanchez A, Vázquez Castillo J A & Vazquez Nuñez Edgar. 2021. A biorefinery based on the biomechanical configuration of the digestive system of a ruminant for ABE production: a consolidated bioprocessing approach. Biomass Conv. Bioref. 11, 2079–2088. https://doi.org/10.1007/s13399-020-00620-5.
Molina-Guerrero CE, Valdez Vazquez I, Macías Mora M J, León Pérez K, Ibarra Sánchez J J & Alcántara Avila R. 2022. Development of a bidimensional analysis approach for n–butanol and electricity production in apple pomace biorefineries in a Mexican context. Biomass Conv. Bioref. 12, 843–856. https://doi.org/10.1007/s13399-021-01472-3.
Morone A & Pandey R. (2014). Lignocellulosic biobutanol production: Gridlocks and potential remedies. Renewable & Sustainable Energy Reviews, 37, 21-35.
Nanda Sonil, Dalai Ajay & Kozinski Janusz. (2014). Butanol and Ethanol Production from Lignocellulosic Feedstock: Biomass Pretreatment and Bioconversion. Energy Science & Engineering. 2. https://doi.org/10.1002/ese3.41 .
Navarro Rico J; Martínez Hernández G B; Gómez Perla; Otón Mariano; Bernabéu Javier; Artés Hernández F; Artés Francisco. (2016). Vitamina C y perfil fenólico de brócoli convencional e híbrido mínimamente procesado, tratado con agua electrolizada y recubrimientos comestibles. Revista Iberoamericana de Tecnología Postcosecha. 17(1), 106-111. ISSN: 1665-0204.
Patracu, I., Bîldea, C. S., & Kiss, A. A. (2017). Eco-efficient butanol separation in the ABE fermentation process. Separation and Purification Technology, 177, 49-61. https://doi.org/10.1016/j.seppur.2016.12.008.
Pereira Lucas, Dias Marina, Mariano Adriano, Filho Rubens & Bonomi Antonio. (2015). Economic and environmental assessment of n-butanol production in an integrated first and second generation sugarcane biorefinery: Fermentative versus catalytic routes. Applied Energy. 160. 120. https://doi.org/10.1016/j.apenergy.2015.09.063.
Philippini RR, Martiniano SE, Ingle AP, Franco Marcelino PR, Silva GM, Barbosa FG, dos Santos JC and da Silva SS (2020) Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries. Front. Energy Res. 8:152. https://doi.org/10.3389/fenrg.2020.00152.
Phillips Enosh. (2021). Biobutanol Production and Advancement. Chapter 13 in book: Bioenergy Research. https://doi.org/10.1002/9781119772125.ch13.
Procentese A, Raganati F, Olivieri G, Russo M E, Salatino P & Marzocchella A. 2014. Continuous xylose fermentation by Clostridium acetobutylicum – Kinetics and energetics issues under acidogenesis conditions. Bioresource Technology, 164, 155-161, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2014.04.054.
Pugazhendhi Arivalagan, Mathimani Thangavel, Varjani Sunita, Rene Eldon R, Kumar Gopalakrishnan, Kim Sang-Hyoun, Ponnusamy Vinoth Kumar & Yoon Jeong-Jun. 2019. Biobutanol as a promising liquid fuel for the future - recent updates and perspectives. Fuel, 253, 637-646, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2019.04.139.
Pythonix (2022). Sustainable Chemistry Powered by the Sun™. https://phytonix.com/
Quintero J A. Moncada J. Cardona C A. 2013. Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach. Bioresource Technology, 139, 300-307. ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2013.04.048.
Reshmy R, Philip E, Madhavan A, Sirohi R, Pugazhendhi A, Binod P, Kumar Awasthi M, Vivek N, Kumar V, Sindhu R. 2022. Lignocellulose in future biorefineries: Strategies for cost-effective production of biomaterials and bioenergy, Bioresource Technology, 344, Part B, 126241, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2021.126241.
Safdar Muhammad, Kausar Tusneem, Jabbar Dr. Saqib, Mumtaz Amer, Ahad Karam & Saddozai Ambreen. (2016). Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis. 25. https://doi.org/10.1016/j.jfda.2016.07.010.
Sanchez A, Valdez-Vazquez I, Soto A, Sánchez S & Tavarez D. 2017. Lignocellulosic n-butanol co-production in an advanced biorefinery using mixed cultures, Biomass and Bioenergy, 102, 1-12, ISSN 0961-9534, https://doi.org/10.1016/j.biombioe.2017.03.023.
Scown Corinne D, Baral Nawa Raj, Yang Minliang, Vora Nemi and Huntington Tyler. 2021. Technoeconomic analysis for biofuels and bioproducts. Current Opinion in Biotechnology, 67:58–64. https://doi.org/10.1016/j.copbio.2021.01.002.
SIAP (2021). Servicio de Información Agroalimentaria y Pesq. Anuario Estadístico Producción Agrícola. https://nube.siap.gob.mx/cierreagricola/.
Solarte Toro Juan & Cardona Carlos Ariel. (2021). Biorefineries as the base for accomplishing the sustainable development goals (SDGs) and the transition to bioeconomy: Technical aspects, challenges and perspectives. Bioresource Technology. 340. 125626. https://doi.org/10.1016/j.biortech.2021.125626.
Sultana, B., Anwar, F., Asi, M.R., & Chatha, S.A. (2008). Antioxidant potential of extracts from different agro wastes: Stabilization of corn oil. Grasas Y Aceites, 59, 205-217.
Takkellapati S, Li T & Gonzalez MA. (2018). An Overview of Biorefinery Derived Platform Chemicals from a Cellulose and Hemicellulose Biorefinery. Clean Technol Environ Policy. Sep; 20(7), 1615-1630. https://doi.org/10.1007/s10098-018-1568-5. PMID: 30319323; PMCID: PMC6178844.
Thomas M, Badr A, Desjardins Y, Gosselin A, Angers P. (2018). Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods, Food Chemistry, 245, 1204-1211, ISSN 0308-8146, https://doi.org/10.1016/j.foodchem.2017.11.021.
Tigunova Olena, Kamenskyh Dmytro, Yevdokymenko Vitalii, Kashkovskiy Volodymyr, Rakhmetov Dzhamal, Blume Yaroslav, Shulga Sergiy & Tkachenko Tatiana. (2021). Biobutanol Production from Plant Biomass. The Open Agriculture Journal. 14. 187-197. https://doi.org/10.2174/1874331502014010187.
Trading Economics; Mexico Labor Costs. (2022). Available at (company web site) https://tradingeconomics.com/mexico/labour-costs?msclkid=f2de6258a97a11eca2624677d6f74b9e.
TRIDGE. Broccoli Market Report. November 12, (2020). Tridge Market Intelligence. https://www.tridge.com/intelligences/brocolli/production
Trindade Wagner & Gonçalves dos Santos Rogério. (2017). Review on the characteristics of butanol, its production and use as fuel in internal combustion engines. Renewable and Sustainable Energy Reviews. 69. 642-651. https://doi.org/10.1016/j.rser.2016.11.213.
Tsung-Yu Tsai, Lo Yung-Chung, Dong Cheng-Di, Nagarajan Dillirani, Chang Jo-Shu & Lee Duu-Jong. (2020). Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum. Applied Energy. 277. 115531. https://doi.org/10.1016/j.apenergy.2020.115531.
Veza I, M Said, Z Latiff, (2021). Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation, Biomass and Bioenergy, 144, 105919, ISSN 0961-9534, https://doi.org/10.1016/j.biombioe.2020.105919.
Visioli, L. J., Enzweiler, H., Kuhn, R. C., Schwaab, M., & Mazutti, M. A. (2014). Recent advances on biobutanol production. Sustainable Chemical Processes, 2(1). https://doi.org/10.1186/2043-7129-2-15.
Wadmare VB, Gadhe KS and Joshi MM. 2019. Studies on physical and chemical composition of Broccoli (Brassica oleracea L.) International Journal of Chemical Studies; 7(2): 825-828. P-ISSN: 2349–8528.
WBA (2021). Global Bioenergy Statistics 2021. World Bioenergy Association. Sweden. Available at: https://www.worldbioenergy.org/global-bioenergy-statistics/.
Yusoff M N A M, Zulkifli N W M, Masum B M & Masjuk H H. (2015). Feasibility of bioethanol and biobutanol as transportation fuel in spark-ignition engine: a review. RSC advances, 5, 100184-100211. https://doi.org/10.1039/c5ra12735a
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Luis Gerardo Frausto-Torres, Édgar Vázquez-Núñez, Caros Eduardo Molina-Guerrero

This work is licensed under a Creative Commons Attribution 4.0 International License.