Mathematical modeling of helminth eggs inactivation in pig (Sus domestica) manure from a backyard farm
DOI:
https://doi.org/10.56845/rebs.v4i2.69Keywords:
helminth eggs, pig manure, alkaline stabilization, mathematical modelingAbstract
Pathogenic organisms in pig manure can cause serious environmental and health problems. Pigs are susceptible to infection by microorganisms such as fecal coliforms, Salmonella spp., protozoa, and helminths. The latter are found in tropical and subtropical zones, where they are a source of health risk associated with poor sanitation due to contaminated water for agricultural irrigation and the inadequate final disposal of excrements on the ground. For this reason, it is necessary to treat the waste so that it complies with the maximum permissible limits established in the official regulations and is disposed of correctly. In this work, the kinetic parameters of the alkaline inactivation process were determined with different CaO concentrations (10, 15, and 20% m/m) and different time periods (0, 30, 60, 90, and 120 min). In addition, the evaluation of the product DT (ammonia dose and temperature) was carried out for the described process, for which the increase in pH and temperature after the addition of alkaline matter was studied for the inactivation of total helminth eggs in a system open. The mathematical modeling was carried out with the Hom model modified for chemical treatments. The results showed that the process used had an efficiency of 94.7% in the destruction of whole helminth eggs, of which 5.8% was carried out thanks to the ammonia dose and the resulting temperature (9,963 mg/L °C). Although the DT factor was not the leading cause of the helminth eggs inactivation it contributed favorably to the process in addition to the applied CaO dose (20%).
References
Amador Gómez, L. P. 2018. Efecto de la digestión anaerobia termofílica en la inactivación de Trichuris suis y la remoción de compuestos orgánicos en residuos porcícolas. Orizaba: Instituto Tecnológico de Orizaba.
An-nori, A., El Fels, L., Ezzariai, A., El Hayani, B., El Mejahed, K., El Gharous, M., Hafidi, M. (2020). Effectiveness of helminth egg reduction by solar drying and liming of sewage sludge. Environmental Science and Pollution Research, 28, 14080–14091. https://doi.org/10.1007/s11356-020-11619-w.
APHA, AWWA and WEF. (2005). Standard Methods for the Examination of Water and Wastewater, 21. American Public Health Association: Washington, DC, USA.
Atenodoro-Alonso, J., Ruíz-Espinoza, J. E., Alvarado-Lassman, A., Martínez-Sibaja, A., Martínez-Delgadillo, S. A., & Méndez-Contreras, J. M. (2015). The enhanced anaerobic degradability and kinetic parameters of pathogenic inactivation of wastewater sludge using pre- and post-thermal treatments Part 2. Revista Mexicana de Ingeniera Quimica, 14(2), 311–319.
El Hayany, B., El Glaoui, G.E.M., Rihanni, M., Ezzariai, A., El Faiz, A., El Gharous, M., Hafidi, M., & El Fels, L. (2018). Effect of dewatering and composting on helminth eggs removal from lagooning sludge under semi-arid climate. Environmental Science Pollution Research, 25(10), 988–10996. https://doi.org/10.1007/s11356-017-1066-z.
Espinosa, M.F., Sancho, A. N., Mendoza, L. M., Rossas Mota, C., & Verbyla, M.E. (2020). Systematic review and meta-analysis of time-temperature pathogen inactivation. International Journal of Hygiene and Environmental Health, 230, 113595. https://doi.org/10.1016/j.ijheh.2020.113595.
Fernández-Vizcaíno, E., Martínez-Carrasco, C., Moratal, S., Barroso, P., & Vicente, J. (2021). Detection of Stephanurus dentatus in wild boar urine using different parasitological techniques. International Journal for Parasitology: Parasites and Wildlife, 15, 31–34. https://doi.org/10.1016/j.ijppaw.2021.04.006.
Fubin, Y., Zifu, L., Saino, M., & Hongmin, D. (2017). Performance of alkaline pretreatment on pathogens inactivation and sludge solubilization. International Journal of Agricultural and Biological Engineering, 10(2), 216–223. https://doi.org/10.3965/j.ijabe.20171002.2600.
Grego, S., Barani, V., Hegarty-Craver, M., Raj, A., Perumal, P., Berg, A. B., & Archer, C. (2018). Soil-transmitted helminth eggs assessment in wastewater in an urban area in India. Journal of Water and Health, 16(1), 49–56. https://doi.org/10.2166/wh.2017.147.
Jafari, M., & Botte, G. G. (2020). Electrochemical treatment of sewage sludge and pathogen inactivation. Journal of Applied Electrochemistry, 51(1), 119–130. https://doi.org/10.1007/s10800-020-01481-6.
Jiménez, B., Maya, C., Velásquez, G., Barrios, J. A., Perez, M., & Román, A. (2020). Helminth Egg Automatic Detector (HEAD): Improvements in development for digital identification and quantification of helminth eggs and their application online. Experimental Parasitology, 217. https://doi.org/10.1016/j.exppara.2020.107959.
Khadra, A., Ezzariai, A., Kouisni, L., & Hafidi, M. (2021). Helminth eggs inactivation efficiency by sludge co-composting under arid climates. International Journal of Environmental Health Research, 31(5), 530–537. https://doi.org/10.1080/09603123.2019.1671960.
Konaté, Y., Maiga, A. H., Basset, D., Casellas, C., & Picot, B. (2013). Parasite removal by waste stabilisation pond in Burkina Faso, accumulation and inactivation in sludge. Ecological Engineering, 50, 101–106. https://doi.org/10.1016/j.ecoleng.2012.03.021.
Lopes, B. C., Machado, E. C., Rodrigues, H. F., Leal, C. D., Araújo, J. C., & Teixeira de Matos, A. 2018. Effect of alkaline treatment on pathogens, bacterial community and antibiotic resistance genes in different sewage sludges for potential agriculture use. Environmental Technology (United Kingdom), 41(4), 529–538. https://doi.org/10.1080/09593330.2018.1505960.
Méndez, J. M., González, C., Alvarado-Lassman, A., Alvarado-Kinnell, G., & Martínez-Delgadillo, S. (2008). Fecal bacteria survival in ammonia-treated wastewater dewatered sludges. Revista Mexicana de Ingeniera Química, 7(3), 229–235.
Méndez-Contreras, J. M., Atenodoro-Alonso, J., Vidal-Rosas, G., & Martínez-Delgadillo, S. A. (2012). Efecto de la dosis y temperatura (DT) generados en el proceso de estabilización alcalina de lodos residuales. XXXIII Encuentro Nacional y II Congreso Internacional AMIDIQ. San José del Cabo, BCS, México.
Montero-López, E. M., Martínez-Gamba, R. G., Herradora-Lozano, M. A., Ramírez-Hernández, G. & Martínez-Rodríguez, R. 2015. Alternativas para la producción porcina a pequeña escala. Alternativas para la producción porcina a pequeña escala. Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia.
Murillo Espinosa, M. (2016). Determinación de parámetros cinéticos en la inactivación de Trichuris suis y remoción de compuestos orgánicos a nivel planta piloto. Orizaba: Instituto Tecnológico de Orizaba.
Naidoo, D., Archer, C. E., Septien, S., Appleton, C. C., & Buckley, C. A. (2020). Inactivation of ascaris for thermal treatment and drying applications in faecal sludge. Journal of Water Sanitation and Hygiene for Development, 10(2), 209–219. https://doi.org/10.2166/washdev.2020.119.
NOM-004-SEMARNAT-2002. Norma Oficial Mexicana, Protección Ambiental. Lodos y biosólidos. Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final.
Ogunyoku, T. A., Habebo, F., & Nelson, K. L. (2016). In-toilet disinfection of fresh fecal sludge with ammonia naturally present in excreta. Journal of Water Sanitation and Hygiene for Development, 6(1), 104–114. https://doi.org/10.2166/washdev.2015.233.
Pérez-Pérez, T., Pereda-Reyes, I., Oliva-Merencio, D., & Zaiat, M. (2016). Anaerobic digestion technologies for the treatment of pig wastes. Cuban Journal of Agricultural Science, 50(3), 343–354.
Pinilla, J. C., Morales, E., Delgado, N. U., & Florez, A. A. (2020). Prevalence and risk factors of gastrointestinal parasites in backyard pigs reared in the bucaramanga metropolitan area, Colombia. Revista Brasileira de Parasitologia Veterinaria, 29(4), 1–10. https://doi.org/10.1590/S1984-29612020094.
Pompeo, R. P., Andreoli, C. V., De Castro, E. A., & Aisse, M. M. (2016). Influence of Long-Term Storage Operating Conditions on the Reduction of Viable Ascaris Eggs in Sewage Sludge for Agricultural Reuse. Water, Air, and Soil Pollution, 227(5). https://doi.org/10.1007/s11270-016-2816-0.
Purwandani, C. E. P., Kuncorojakti, S., & Suwanti, L. T. (2021). Prevalence of Helminths in Digestive Tract of Cows in Indonesia. World’s Veterinary Journal, 11(4), 658–662. https://doi.org/10.54203/scil.2021.wvj82.
Senecal, J., Nordin, A., & Vinnerás, B. (2020). Fate of ascaris at various pH, temperature and moisture levels. Journal of Water and Health, 18(3), 375–382. https://doi.org/10.2166/wh.2020.264.
Tuasha, N., Hailemeskel, E., Erko, B., & Petros, B. (2019). Comorbidity of intestinal helminthiases among malaria outpatients of Wondo Genet health centers, southern Ethiopia: implications for integrated control. BMC Infectious Diseases, 19(1), 659. https://doi.org/10.1186/s12879-019-4290-y.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Roger Emmanuel Sales-Pérez, Diana Ibeth Romero-Mota, Alejandro Alvarado-Lassman, Jesús Atenodoro-Alonso, Juan Manuel Méndez-Contreras

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright © D.R. Asociación Latinoamericana de Desarrollo Sustentable y Energías Renovables A. C.,