Chlorella sp. immobilized with application in the treatment, monitoring of water and biomass production

PDF downloads: 505

Authors

  • Guadalupe Michel-Parra Laboratorio de Limnología, Ciencias de la Naturaleza, Universidad de Guadalajara, Cd. Guzmán, Jalisco, México
  • Luz Adriana Vizcaíno-Rodríguez Laboratorio de Microbiología, Ing. en Biotecnología, Universidad Politécnica de la Zona Metropolitana de Guadalajara, Tlajomulco de Zúñiga, Jalisco, México
  • Nereida Yuriko Aguilar-Corona Laboratorio de Microbiología, Ing. en Biotecnología, Universidad Politécnica de la Zona Metropolitana de Guadalajara, Tlajomulco de Zúñiga, Jalisco, México
  • Juan Luis Caro-Becerra Laboratorio de Microbiología, Ing. en Biotecnología, Universidad Politécnica de la Zona Metropolitana de Guadalajara, Tlajomulco de Zúñiga, Jalisco, México
  • Pedro Alonso Mayoral-Ruíz Laboratorio de Microbiología, Ing. en Biotecnología, Universidad Politécnica de la Zona Metropolitana de Guadalajara, Tlajomulco de Zúñiga, Jalisco, México

DOI:

https://doi.org/10.56845/rebs.v3i2.54

Keywords:

bioremediation, biosensors, eutrophication

Abstract

The application of microalgae in bioremediation processes is studied to remove toxic components and ions excess that cause eutrophication.  Algae use the nutrients excess present in the water to produce biomass through photosynthesis. On the other way, microalgae are used in environmental monitoring, these organisms are sensitive to both natural and anthropogenic pollutants, which promote or inhibit cell and population growth. The present study aimed to determine an optimal matrix for the immobilization of Chlorella sp. It is a native species of the region. The matrices tested were 4 % calcium alginate and 4 % alginate-agar. For the culture, Bold's medium was used, and growth kinetics were carried out for each treatment in Bach-type culture, during 21 days of incubation. The response variables were maximum cell concentration, cell viability and conservation of the spheres. The maximum cell concentration was 1.07x106 cells.mL and it was reached after 15 days of culture, in 4% alginate spheres. The doubling time was 0.162 and 0.141 for Chlorella sp. Retained in 4 % alginate matrix and 4 % alginate agar, respectively. Regarding the quality of the spheres, after 15 days of culture, the disintegration process of the Alginate-Agar immobilization system began. The alginate spheres remained unchanged for the 21 days of the experiment. In conclusion, the best treatment for the immobilization of Chlorella sp was obtained when 4 % alginate was used, and it is recommended to continue the studies for the development of the bioremediation system, biomass production and biosensors.

References

Ardila-Álvarez, A. M. López-Matos, Y., & Vásquez-Cáceres, M. E., González-Delgado, Á. D., & Barajas-Solano, A. F. (2017). Obtención de lípidos y carbohidratos a partir de microalgas mediante el diseño de medios de cultivo selectivos. Tecnológicas, 20(38),85-96. ISSN: 0123-7799.

Barceló H., Hansen P.-D. (2009). Biosensor for Enviromental Monitoring of Aquatic Systems. Springer.

Calderón-Delgado I.C., Mora-Solarte D.A.,Velasco-Santamaría Y. M. (2020). Respuestas fisiológicas y capacidad antioxidante de Chlorella vulgaris (Chlorellaceae) expuesta a fenantreno. Acta biol. Colomb. 25(2):225-234.

Escobedo, J.M. & Calderón, C. A. (2021). Biomasa microalgal con alto potencial para la producción de biocombustibles. Scientia Agropecuaria, 12(2), 265-282.

Forero-Cujiño, M. A., Montengro, R. L.C., Pinilla-Agudelo, G.A. & Melgarejo-Muñoz, L. M. (2016). Inmovilización de las microalgas Scenedesmus ovalternus (Scenedesmaceae) y Chlorella vulgaris (Chlorellaceae) en esferas de alginato de calcio. Acta Biológica Colombiana, 21(2), 437-442.

Ibarrarán M.E., Mendoza A., Pastrana C., Manzanilla E.J. (2017). Determinantes socioeconómicos de la calidad del agua superficial en México. Fundación Dialnet 29 (69) 89-125. ISSN 0188-7408, ISSN-e 2448-4849.

Howe K.J., Hand D.W., Crittenden J.C., Trussell R. R. Tchobanoglous G.2017. Principios de Tratamiento de agua. CENGAGE Learning.

Jimenez E. M. Castillo C.A. (2021). Microalgal biomass with high potencial para la producción de biocombustibles. Scientia Agropecuaria. 12(2)265-282.

Infante C., Angulo, E., Zárate A., Flores J. Z., Barrios F., Zapata C. (2012) Propagación de la microalga Chlorella sp. en cultivo por lote: cinética de crecimiento celular. Avances de Ciencias e Ingenierías 3(2) 159-164 ISSN: 0718-8706.

Luque T., Janeth F. (2020). Remoción de nitratos y fosfatos de agua residual mediante el uso de microalgas altiplánicas a nivel experimental. Acta Nova, 9(4), 543-552.

Rodríguez- Castillo, G., Amarelo-Santos, C., Guerrero-Barrantes, M., Delgado dos R.A. Estudio de las características morfológicas y fisiológicas de Chlorella protothecoides orientado hacia la producción de lípidos para biocombustible. Tecnología en Marcha. 29 (Estudiantes 3) 3-11.

Twist H, Edwards A, Codd G. (1998). A novel in-situ biomonitor using alginate immobilised algae (Scenedesmus subspicatus) for the assessment of eutrophication in flowing suface waters. Water Resour. 31(8): 2066-2072.

Yabur R., Y. Bashan, and G. Hernández-Carmona (2007) “Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion,” J. Appl. Phycol., vol. 19, no. 1, pp. 43–53.

Downloads

Published

2021-11-15

How to Cite

Michel-Parra, G., Vizcaíno-Rodríguez, L. A., Aguilar-Corona, N. Y., Caro-Becerra, J. L., & Mayoral-Ruíz, P. A. (2021). Chlorella sp. immobilized with application in the treatment, monitoring of water and biomass production. Renewable Energy, Biomass & Sustainability, 3(2), 62–68. https://doi.org/10.56845/rebs.v3i2.54

Issue

Section

Original Articles