Life Cycle Assessment of wood cookstoves from Mexico and Central America

DOI:
https://doi.org/10.56845/rebs.v3i1.45Keywords:
solid biofuels, impacts, public policy, greenhouse gas mitigation, rural residential sectorAbstract
Currently, in the world, there is a use of obsolete technologies to satisfy cooking and water heating needs in rural areas. These technologies have emissions with environmental impacts, which contribute to climate change. This study performs a Life Cycle Assessment in the Global Warming Potential (CO2e) impact category in six firewood devices representative of Mexico and Central America. As part of this analysis, measurements of emissions and energy consumption in a typical day during water heating and cooking tasks were integrated. Devices such as open fire have zero CO2e contributions in the construction but represent the highest emissions and energy consumption in a typical cooking day. On the other hand, cookstoves such as the Patsari and the Onil contribute to mitigating CO2e emissions in the long term. The main CO2e contributions are produced in the final use. This analysis is useful in making decisions for the implementation of massive cookstove programs.References
Bailis, R., Drigo, R., Ghilardi, A., & Masera, O. (2015). The carbon footprint of traditional woodfuels. Nature Climate Change, 5(3), 266–272. https://doi.org/10.1038/nclimate2491
Hauschild, M. (2015). Life Cycle Impact Assessment. International Journal of Life Cycle Assessment (Vol. 2). https://doi.org/10.1007/BF02978760
IPCC. (2015). Cambio climático 2014: Informe de Síntesis. Contribución de los Grupos de trabajo I,II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático (Primera pu). Ginebra, Suiza.
Johnson, M., Edwards, R., Alatorre Frenk, C., & Masera, O. (2008). In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmospheric Environment, 42(6), 1206–1222. https://doi.org/10.1016/j.atmosenv.2007.10.034
L ́Orange, C. L., Leith, D., Volckens, J., & Defoort, M. (2015). ScienceDirect A quantitative model of cookstove variability and field performance: Implications for sample size. Biomass and Bioenergy, 72, 233–241. https://doi.org/10.1016/j.biombioe.2014.10.031
Lee, C. M., Chandler, C., Lazarus, M., & Johnson, F. X. (2013). Assessing the Climate Impacts of Cookstove Projects: Issues in Emissions Accounting. Challenges in Sustainability, 1(2), 53–71. https://doi.org/10.12924/cis2013.01020053
Life Cycle Assessment Handbook. (2012). Life Cycle Assessment Handbook. https://doi.org/10.1002/9781118528372
Maccarty, N. A., & Mark, K. (2016). An integrated systems model for energy services in rural developing communities Global Community Household, 113, 536–557.
OMS. (2010). WHO guidelines for indoor air quality: selected pollutants.World Health Organization Regional Office for Europe, Bonn. Retrieved from http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf
Ruiz-García, V.M., Edwards, R. D., Ghasemian, M., Berrueta, V. M., Princevac, M., Vázquez, J. C., ... Masera, O. R. (2018). Fugitive Emissions and Health Implications of Plancha-Type Stoves. Environmental Science and Technology, 52(18). https://doi.org/10.1021/acs.est.8b01704
Ruiz-García, Víctor M, & Masera, O. R. (2020). Energías renovables en el sector residencial rural en México : estado del arte y oportunidades de colaboración interinstitucional, 5(1), 238–245.
Serrano-Medrano, M., García-Bustamante, C., Berrueta, V. M., Martínez-Bravo, R., Ruiz-García, V. M., Ghilardi, A., & Masera, O. (2018). Promoting LPG, clean woodburning cookstoves or both? Climate change mitigation implications of integrated household energy transition scenarios in rural Mexico. Environmental Research Letters, 13(11). https://doi.org/10.1088/1748-9326/aad5b8