Study of the hydrodynamic effect in column PBR on cellular growth, nitrogen removal, lipid productivity and fatty acid profile in Chlorella vulgaris.

PDF downloads: 118

Authors

DOI:

https://doi.org/10.56845/rebs.v1i1.11

Keywords:

aeration, hydrodynamic, photo-bioreactor, lipids productivity, fatty acid profile

Abstract

In this work we analyzed different biochemical parameters such as cell growth, nitrogen removal, lipid productivity and fatty acid profile in Chlorella vulgaris by hydrodynamic effect varying the aeration to (0.75, 1.25, 1.75, 2.25) vvm and white light conditions continuous in column photobioreactor; hydrodynamic calculations of the FBR were carried out to determine the shear rate and possible existence of hydrodynamic stress at the proposed aeration conditions; the values reached in the shear rate were reduced (0.0025 to 0.0220) s-1, observing flow of homogeneous type in all the experiments; however, the maximum values of cell growth and specific growth rate (μ) were (5.90x106 cells mL-1 and 0.0229 d-1) respectively, as well as the highest N consumption (60%) and the highest productivity of lipids (8.98 mgL-1d-1) were reached during the experiment at 0.75 vvm. In relation to the analysis of the fatty acid profile greater presence of polyunsaturated fatty acids (PUFA) was observed in the experiments at 0.75 vvm, 1.75 vvm and 2.25 vvm, however, at 1.25 vvm, higher productivity of saturated fatty acids (SFA) was obtained; with respect to monounsaturated fatty acids (MUFA) the highest concentration was reflected at 0.75 vvm. The components with the highest presence in the fatty acid profile analysis were C12: 0; C20: 5N3; C24: 1; C 22: 0; C22: 2.

References

Amini-Khoeyi, Z., Seyfabadi, J. & Ramezanpour, Z. (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae Chlorella vulgaris. Aquaculture International, 20(1), 41-49.

Babcock, R.W., Malda, J., Radway, C. (2002). Hydrodynamics and mass transfer in a tubular airlift photobioreactor. Journal of Applied Phycology, 14, 169-184.

Bligh, E.G., Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 8, 911–917.

Cerri, M.O., Futiwaki, L., Jesus, C.D.F., Cruz, A.J.G., Badino, A.C. (2008). Average shear rate for non-Newtonian fluids in a concentric-tube airlift bioreactor. Biochemical Engineering Journal, 39, 51–57

Contreras-Flores C., Peña-Castro J.M., Flores-Cotera L.B., Cañizares-Villanueva R.O. (2003). Avances en el diseño conceptual de fotobiorreactores para el cultivo de microalgas. Interciencia, 28, 450-456

Chiu, S., Kao, C., Chen, C., Kuan, T., Ong, S. & Lin, C. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99(9), 3389-3396.

Del Campo, J.A., García-González, M., Guerrero, M.G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology, 74, 1163–1174.

Doran, P. M. (1995). Bioprocess engineering principles. London: Academic Press Limited.

Knothe, G. (2010). Calidad del combustible biodiesel y la norma astm. Palmas 31(Especial), 162-171.

Fernández, L., L.C., Montiel, M.J., Millán, O.P. (2012). Producción de biocombustibles a partir de microalgas. Ra Ximhai, 12, 101-115.

Grobbelaar, J.U. (2010). Microalgal biomass production: challenges and realities. Photosynth Res, 106, 135-134.

Guillard, R.R.L., Ryther, J.H. (1962) Studies on Marine Planktonic Diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8, 229-239.

Haro, S. & Perales J. A. (2015). Kinetics of Nutrient Uptake and Growth of a Bloom of Microalgae in a High Rate Algae Pond (HRAP) Photobioreactor. Tecnologia y Ciencias del Agua, 6(1), 15-31.

Harun, R., Davidson, M., Doyle, M., Gopiraj, R., Danquah, M., Forde, G. (2011). Techno economic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy, 3, 741-747.

Hincapie, E. (2010). Design, construction and validation of an internally-lift airlift FBR. (Thesis of degree master of science). Faculty of the Russ College of Engineering and Technology of Ohio University. Ohio State, United States of America.

Ho, S., Chen, C., Chang, J. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol, 113, 244-252.

Hultberg, M., Asp, H., Marttila, S., Bergstrand, K. J. & Gustafsson, S. (2014). Biofilm Formation by Chlorella vulgaris is affected by light quality. Current Microbiology, 69(5), 699-702.

Jiang, L., Ji, Y., Hu, W., Pei, H., Nie, C., Ma, G. & Song, M. (2016). Adjusting irradiance to enhance growth and lipid production of Chlorella vulgaris cultivated with monosodium glutamate wastewater. Journal of Photochemistry and Photobiology B: Biology 162(1), 619-624.

Kee-Lam, M., Iqram-Yusoff, M., Uemura, Y., Wei-Lim, J., Gek-Khoo, C., Teong-Lee, K. & Chyuan-Ong, H. (2016). Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103(1), 197-207.

Kim, J., Lee, J. & Lu, T. (2015). A model for autotrophic growth of Chlorella vulgaris under photolimitation and photoinhibition in cylindrical photobioreactor. Biochemical Engineering Journal, 99(1), 55-60.

Lee, Y. K. (2004). Algal nutrition: Heterotropic carbon nutrition. En Handbook of microalgal culture: Biotechnology and applied phycology, (116–124). Oxford: Blackwell Science..

Lee, Y. K. (2016). Microalgae Cultivation Fundamentals. En Algae Biotechnology Products and Processes (1-2). Switzerland: Springer editors.

Li, Y., Fei, X., Deng, X. (2012). Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass and Bioenergy, 42,199-211.

Mandal, S. y Mallick, N. (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281-291.

Mata, T., Martins, A., Caetano, N. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217-232.

Monkonsit, S., Powtongsook, S., Pavasant, P. (2011). Comparison between Airlift Photobioreactor and Bubble Column for Skeletonema costatum cultivation. Engineering Journal, 15, 267-273.

Morales, M., Cabello, J. and Revah, S. (2015). Gas Balances and Growth in Algal Cultures. Algal Biorefineries, 263-314.

Pham, H., Kwak, H. S., Hong, M., Lee, J., Chang W. S. & Sim, S. J. (2017). Development of an X-Shape airlift photobioreactor for increasing algal biomass and biodiesel production. Bioresource Technology. 239(1), 211-218.

Park, J., Craggs, R., Shilton, A. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 10, 35-42.

Piccolo T. (2008). Aquatic biofuels. 2019, de GlobeFish-FIIU Sitio web: http:// www.globefish.org/files/Aquaticbiofuels_638.pdf.

Rawat, I., Ranjith-Kumar, R., Mutanda, T., Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411-3424.

Richmond, A. (2004). Handbook of microalgal culture: Biotechnology and applied phycology. Blackwell Science Ltd.

Robles Heredia, J.C. (2014). Evaluación de la productividad de lípidos en Chlorella vulgaris y Scenedesmus obliquus bajo dos modos de limitación de nitrógeno en fotobiorreactores tipo airlift y columna de burbujeo. (Tesis de Doctorado). Universidad Autónoma de Yucatán, Yucatán, México.

Ruiz-Marin, A., Mendoza-Espinosa, L., Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101, 58-64.

Sadeghizadeh, A., Farhad dad F., Moghaddasi, L. & Rahimi R. (2017). CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor. Bioresource Technology, 243(1), 441-447.

Shi, J., Pandey, P. K., Franz, A. K. Deng, H. & Jeannotte, R. (2016). Chlorella vulgaris production enhancement with supplementation of synthetic medium in dairy manure wastewater. AMB Express, 6(15), 1-9. doi:10.1186/s13568-016-0184-1.

Trujillo-Roldan, M. A. y Galindo, E. (2003) El estrés hidrodinámico en cultivos celulares. BioTecnología, 8(1), 7-22.

Ugwu, C.U., Aoyagi, H., Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021–4028.

Valdez-Cruz, N. A. y Trujillo-Roldan, M. A. (2006) El estrés hidrodinámico: Muerte y daño celular en cultivos agitados. Revista Latinoamericana de Microbiología, 48(3-4), 269-280.

Widjaja, A., Chien, C., Ju, Y., (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineer, 40, 13-20

Zittelli, G.C., Rodolfi, L., Biondi, N., Tredici, M.R. (2006). Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 261, 932–943.

Downloads

Published

2019-11-18

How to Cite

Robles-Heredia, J. C., Ruiz-Marín, A., Narváez-García, A., Escalante-Montejo, L. E., Martínez-De la Cruz, M., Canedo-López, Y., … Zavala-Loría, J. del C. (2019). Study of the hydrodynamic effect in column PBR on cellular growth, nitrogen removal, lipid productivity and fatty acid profile in Chlorella vulgaris. Renewable Energy, Biomass & Sustainability, 1(1), 33–44. https://doi.org/10.56845/rebs.v1i1.11

Issue

Section

Original Articles