Enhancing biomethane production from citrus waste: An integrated approach of hydrothermal carbonization and anaerobic digestion for sustainable waste management

PDF downloads: 168

Authors

DOI:

https://doi.org/10.56845/rebs.v5i2.96

Keywords:

biomethane production, orange waste, waste to energy, sustainable waste management

Abstract

This study investigates the energy recovery potential of bio-oil derived from hydrothermal carbonization (HTC) of citrus waste through anaerobic digestion (AD). The bio-oil, a complex mixture containing 30-50% of the original carbon from biomass, serves as a valuable substrate for AD. Leveraging the HTC pretreatment, the hydrolysis step in AD becomes more efficient, facilitating faster degradation rates. Anaerobic digestion of the bio-oil was conducted in a high-loading hybrid anaerobic reactor. The reactor underwent stabilization using tomato liquid fraction, followed by bio-oil feeding with an applied volumetric loading of 5 g COD/L-d under mesophilic conditions. Remarkably, COD removals exceeded 90% when utilizing the tomato fraction and surpassed 80% in the bio-oil feed. Additionally, methane yield approached theoretical levels, highlighting the effectiveness of combining HTC and AD technologies. The study demonstrates that the integration of HTC and AD offers a promising alternative for the sustainable utilization of citrus industry wastes, showcasing high removal efficiencies and methane production. This approach aligns with circular economy principles, providing a pathway for efficient waste valorization and renewable energy generation.

References

Adams, K. J., Stuart, B., & Kumar, S. (2021). Investigation of Anaerobic Digestion of the Aqueous Phase from Hydrothermal Carbonization of Mixed Municipal Solid Waste. Biomass, 1(1), 61-73. https://doi.org/10.3390/biomass1010005. DOI: https://doi.org/10.3390/biomass1010005

Al Ramahi, M., Keszthelyi-Szabó, G., & Beszédes, S. (2021). Coupling hydrothermal carbonization with anaerobic digestion: an evaluation based on energy recovery and hydrochar utilization. Biofuel Research Journal, 8(3), 1444-1453. http://dx.doi.org/10.18331/BRJ2021.8.3.4. DOI: https://doi.org/10.18331/BRJ2021.8.3.4

Al-Nuaimy, M. N. M., Azizi, N., Nural, Y., & Yabalak, E. (2023). Recent advances in environmental and agricultural applications of hydrochars: A review. Environmental Research, 117923. https://doi.org/10.1016/j.envres.2023.117923. DOI: https://doi.org/10.1016/j.envres.2023.117923

Alvarado-Lassman, A., Rustrián, E., García-Alvarado, M. A., Rodríguez-Jiménez, G. C., & Houbron, E. (2008). Brewery wastewater treatment using anaerobic inverse fluidized bed reactors. Bioresource technology, 99(8), 3009-3015. https://doi.org/10.1016/j.biortech.2007.06.022. DOI: https://doi.org/10.1016/j.biortech.2007.06.022

Aragón-Briceño, C. I., Grasham, O., Ross, A. B., Dupont, V., & Camargo-Valero, M. A. (2020). Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renewable energy, 157, 959-973. https://doi.org/10.1016/j.renene.2020.05.021 DOI: https://doi.org/10.1016/j.renene.2020.05.021

Brown, A. E., Finnerty, G. L., Camargo-Valero, M. A., & Ross, A. B. (2020). Valorisation of macroalgae via the integration of hydrothermal carbonisation and anaerobic digestion. Bioresource Technology, 312, 123539. https://doi.org/10.1016/j.biortech.2020.123539. DOI: https://doi.org/10.1016/j.biortech.2020.123539

Buffière, P., Bergeon, J. P., & Moletta, R. (2000). The inverse turbulent bed: a novel bioreactor for anaerobic treatment. Water Research, 34(2), 673-677. https://doi.org/10.1016/S0043-1354(99)00166-9 DOI: https://doi.org/10.1016/S0043-1354(99)00166-9

Erdogan, E., Atila, B., Mumme, J., Reza, M. T., Toptas, A., Elibol, M., & Yanik, J. (2015). Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresource technology, 196, 35-42. https://doi.org/10.1016/j.biortech.2015.06.115. DOI: https://doi.org/10.1016/j.biortech.2015.06.115

Ipiales, R. P., de La Rubia, M. A., Diaz, E., Mohedano, A. F., & Rodriguez, J. J. (2021). Integration of hydrothermal carbonization and anaerobic digestion for energy recovery of biomass waste: An overview. Energy & Fuels, 35(21), 17032-17050. https://doi.org/10.1021/acs.energyfuels.1c01681 DOI: https://doi.org/10.1021/acs.energyfuels.1c01681

Islam, M. N., Jung, H. Y., & Park, J. H. (2015). Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals. Journal of Environmental Management, 163, 262-269. https://doi.org/10.1016/j.jenvman.2015.08.007 DOI: https://doi.org/10.1016/j.jenvman.2015.08.007

Juárez-García, I. A., Snell-Castro, R., Méndez-Contreras, J. M., Vallejo-Cantú, N. A., Alvarado-Lassman, A., & Rosas-Mendoza, E. S. (2022). Performance of an anaerobic biofilm reactor through the application of different operational conditions. Renewable energy, biomass & sustainability, 4(1), 14-22. https://doi.org/10.56845/rebs.v4i1.71. DOI: https://doi.org/10.56845/rebs.v4i1.71

Li, Y., Xu, H., Zhao, Y., Yi, X., Chen, L., Jin, F., & Hua, D. (2023). The integrated production of hydrochar and methane from lignocellulosic fermentative residue coupling hydrothermal carbonization with anaerobic digestion. Chemosphere, 340, 139929. https://doi.org/10.1016/j.chemosphere.2023.139929. DOI: https://doi.org/10.1016/j.chemosphere.2023.139929

Lucian, M., Volpe, M., Merzari, F., Wüst, D., Kruse, A., Andreottola, G., & Fiori, L. (2020). Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresource technology, 314, 123734. https://doi.org/10.1016/j.biortech.2020.123734. DOI: https://doi.org/10.1016/j.biortech.2020.123734

Marin-Batista, J. D., Villamil, J. A., Rodriguez, J. J., Mohedano, A. F., & De la Rubia, M. A. (2019). Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion. Bioresource technology, 274, 395-402. https://doi.org/10.1016/j.biortech.2018.11.103. DOI: https://doi.org/10.1016/j.biortech.2018.11.103

Missaoui, A., Bostyn, S., Belandria, V., Cagnon, B., Sarh, B., & Gökalp, I. (2017). Hydrothermal carbonization of dried olive pomace: Energy potential and process performances. Journal of Analytical and Applied Pyrolysis, 128, 281-290. https://doi.org/10.1016/j.jaap.2017.09.022 DOI: https://doi.org/10.1016/j.jaap.2017.09.022

Rosas-Mendoza, E. S., Méndez-Contreras, J. M., Martínez-Sibaja, A., Vallejo-Cantú, N. A., & Alvarado-Lassman, A. (2018). Anaerobic digestion of citrus industry effluents using an Anaerobic Hybrid Reactor. Clean Technologies and Environmental Policy, 20, 1387-1397. https://doi.org/10.1007/s10098-017-1483-1. DOI: https://doi.org/10.1007/s10098-017-1483-1

Saba, A., Saha, P., & Reza, M. T. (2017). Co-Hydrothermal Carbonization of coal-biomass blend: Influence of temperature on solid fuel properties. Fuel processing technology, 167, 711-720. https://doi.org/10.1016/j.fuproc.2017.08.016. DOI: https://doi.org/10.1016/j.fuproc.2017.08.016

SENER (2022). Balance Nacional de Energía 2022. Recuperado el 15 de noviembre de 2023, de Secretaría de Energía: https://base.energia.gob.mx/BNE/BalanceNacionalDeEnerg%C3%ADa2022.pdf

Sharma, K., Mahato, N., Cho, M. H., & Lee, Y. R. (2017). Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 34, 29-46. https://doi.org/10.1016/j.nut.2016.09.006 DOI: https://doi.org/10.1016/j.nut.2016.09.006

Zaini, I. N., Novianti, S., Nurdiawati, A., Irhamna, A. R., Aziz, M., & Yoshikawa, K. (2017). Investigation of the physical characteristics of washed hydrochar pellets made from empty fruit bunch. Fuel Processing Technology, 160, 109-120. https://doi.org/10.1016/j.fuproc.2017.02.020 DOI: https://doi.org/10.1016/j.fuproc.2017.02.020

Zhu, K., Liu, Q., Dang, C., Li, A., & Zhang, L. (2021). Valorization of hydrothermal carbonization products by anaerobic digestion: Inhibitor identification, biomethanization potential and process intensification. Bioresource Technology, 341, 125752. https://doi.org/10.1016/j.biortech.2021.125752. DOI: https://doi.org/10.1016/j.biortech.2021.125752

Downloads

Published

2023-12-31

How to Cite

Vallejo-Cantú, N. A., Galván-Hernández, A., Alvarado-Vallejo, A., Méndez-Contreras, J. M., Rosas-Mendoza, E. S., & Landeta-Escamilla, O. (2023). Enhancing biomethane production from citrus waste: An integrated approach of hydrothermal carbonization and anaerobic digestion for sustainable waste management. Renewable Energy, Biomass & Sustainability, 5(2), 40–46. https://doi.org/10.56845/rebs.v5i2.96

Issue

Section

Original Articles