An open-loop control algorithm for improved tracking in a heliostat

DOI:
https://doi.org/10.56845/rebs.v6i1.90Keywords:
heliostat, solar tracker, simulation, algorithm designAbstract
The growing energy demand and its relation to climate change have driven the search for sustainable alternatives, such as concentrated solar energy. In this context, heliostats play a crucial role by reflecting and concentrating solar light onto a receiver. However, traditional control approaches based on geographical data have limitations. This study introduces an autonomous control system for heliostats that eliminates the need for preloaded geographical data. The approach is based on communication between the heliostat and the solar tracker, with two configuration modes: map calibration and automatic. Centralized and autonomous heliostats are distinguished, with the latter being the focus of the study. Autonomous heliostats have their own control system and can make decisions regarding positioning and safety. The methodology involves a mathematical algorithm that calculates the optimal rotation and tilt of the heliostat to redirect light toward a target. Simulation and physical prototype testing validate a remarkable consistency between simulated and experimental data. A key result is the surprising similarity of 97.9% between the obtained data, validating the algorithm's effectiveness. This study provides a robust approach for designing autonomous heliostat control systems, integrating simulation and experimentation. These results support the algorithm's precision and ability to direct solar radiation effectively. Expanding towards autonomous control and complete heliostat system evaluation facilitates the path toward more efficient and sustainable concentrated solar energy.
References
Carvajal Carrasco, E. (2018). Diseño y construcción de un helióstato con seguimiento solar en dos ejes para re-direccionar radiación incidente hacia un disco concentrador parabólico, Tesis de Licenciatura. Valparaiso, Chile: Laboratorio de Energías Renovables. UTFSM. http://hdl.handle.net/11673/41565
Cock Martínez, F. (2018). Diseño mecánico de un heliostato modular, Tesis de Maestría. León, Guanajuato, México: Centro de Investigaciones en Óptica A.C. https://cio.repositorioinstitucional.mx/jspui/bitstream/1002/641/1/17354.pdf
Delgado Carreño, O. R., (2019). Metodología para la evaluación del desempeño anual de sistemas de concentración de energía solar, Tesis de Maestría. Monterrey, Nuevo León, Universidad Autónoma de Nuevo León. http://eprints.uanl.mx/id/eprint/17871
Díaz-Félix, L., Escobar-Toledo, M., Waissman, J., Pitalúa-Díaz, N., & Arancibia-Bulnes, C. (2014). Evaluation of Heliostat Field Global Tracking Error Distribution by Monte Carlo Simulations. Energy Procedia, 49, 1308-1317. https://doi.org/10.1016/j.egypro.2014.03.140 DOI: https://doi.org/10.1016/j.egypro.2014.03.140
Freeman, J., E.U., K., & S.R., R. (2014). Study od the errors influencing heliostats for calibration and control system desing. International Conference on Recent Advances and Innovations In Engineering, 1-8. https://doi.org/10.1109/ICRAIE.2014.6909113 DOI: https://doi.org/10.1109/ICRAIE.2014.6909113
García-Lara, H.D., Velázquez-Domínguez, A.A., Arriola-Gil, Y.Y., García-Yera, M. (2021). Evaluación de pérdidas en un campo de heliostatos mediante software de trazado de rayos. Renewable Energy, Biomass & Sustainability (REB&S), 3(2), 1-9. https://doi.org/10.56845/rebs.v3i2.46 DOI: https://doi.org/10.56845/rebs.v3i2.46
García Navajas, Ginés, And A Egea Gea (2011). El Heliostato Autónomo. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT. http://dx.doi.org/10.13140/2.1.3425.1525
Gross, F., & Balz, M. (2020). Potentially Confusing Coordinate Systems for Solar Tower Plants. AIP Conference Proceedings. https://doi.org/10.1063/5.0028942 DOI: https://doi.org/10.1063/5.0028942
Jones, S., & Stone, K. (1999). Analysis of solar two heliostat tracking error sources. ASME Internatinal Solar Energy Conference. Retrieved from: https://www.osti.gov/biblio/3312
Nakamura Katsushige (2004). Autonomous Heliostat, European Patent Office, No. EP1475582A2. https://patentimages.storage.googleapis.com/2f/43/e7/fcd3686c164516/EP1475582A2.pdf
Ordaz-Castillo J., García-Lara, H.D., Bautista-Gutiérrez, M., Carrillo-Torres, C.D., Morales-Almaguer, O.A., Méndez-Díaz, S. Diseño de sistema de seguimiento y redireccionamiento para concentración de energía termosolar. Congreso Internacional Anual de la SOMIM 2023, Ciudad Juárez, Chihuahua, México. https://somim.org.mx/memorias/memorias2023/inicio.html
Pfahl, Andreas, Joe Coventry, Marc Röger, et al.,. (2017). Progress in Heliostat Development. Solar Energy 152(Supplement C). Progress in Solar Energy Special Issue: Concentrating Solar Power (CSP): 3–37. https://doi.org/10.1016/j.solener.2017.03.029 DOI: https://doi.org/10.1016/j.solener.2017.03.029
Sattler, J. C., Röger, M., Schwarzbözl, P., Buck, R., Macke , A., Raeder, C., & Göttsche, J. (2020). Review of heliostat calibration and tracking control methods. Solar Energy (207), 110-132. https://doi.org/10.1016/j.solener.2020.06.030 DOI: https://doi.org/10.1016/j.solener.2020.06.030
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hector D. Garcia-Lara, Job Ordaz Castillo, Nilda Gabriela Trejo-Luna , Santos Mendez-Diaz

This work is licensed under a Creative Commons Attribution 4.0 International License.