Estimation of atmospheric stability for the city of Zacatecas, Mexico

PDF downloads: 176

Authors

  • Verónica Ramírez-Díaz Instituto Politécnico Nacional – Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas. Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, 98160, Zacatecas, Zac., Mexico.
  • Miguel Mauricio Aguilera-Flores Instituto Politécnico Nacional – Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas. Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, 98160, Zacatecas, Zac., Mexico. https://orcid.org/0000-0002-7833-0830
  • David Enrique Flores-Jiménez Instituto de Ingeniería UABC Campus Mexicali, Calle de la Normal S/N and Blvd. Benito Juárez, Col. Insurgentes Este Mexicali B. C., 21280, Mexicali, Baja California, México. https://orcid.org/0000-0002-3607-9991
  • Verónica Ávila-Vázquez Instituto Politécnico Nacional – Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas. Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, 98160, Zacatecas, Zac., Mexico. https://orcid.org/0000-0001-9244-6699

DOI:

https://doi.org/10.56845/rebs.v4i2.68

Keywords:

atmospheric stability, concentration, contaminants, convection

Abstract

In the present work, due to the importance of the dispersion of pollutants in the air, the modified Pasquill-Gifford classification was used to determine the classes of atmospheric stability, which serve to indirectly identify the increase or decrease of the existing mechanical and convective turbulence, conditions that at the same time affect the dispersion of pollutants; the above was carried out in the municipality of Zacatecas in the years of 2019 and 2020; the data of concentrations of Carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOX), PM10 and PM2.5 particles, and ozone (O3) released from a monitoring station and were contrasted with the estimated atmospheric stability classes in order to observe the influence of these classes on these pollutants; and finally, based on the results obtained, it was identified in which seasons of the year there is a greater and lesser dispersion of pollutants. Once this process was carried out, a series of recommendations were issued about the feasibility of using this classification in the city of Zacatecas. Maximum frequencies of class A were obtained between 9:00 and 12:00 hours, considered the most unstable with 52.22% for spring, 53.57% for summer, 44.87% for autumn, and 40% for winter. When class A increased its frequency, the concentration of particles decreased, and when class F increased, the concentration of particles increased. Therefore, it is recommended to consider different factors that may influence the dispersion of pollutants in the city of Zacatecas and, regarding the results obtained, make use of this classification only in hourly averages. Likewise, the Pasquill-Gifford classification could be combined with atmospheric models to determine the behavior of particles in different periods with greater confidence.

References

BBC Weather (2003). WeatherWise - Weather Station - Cloud. https://web.archive.org/web/20031208161922/http://www.bbc.co.uk/weather/weatherwise/activities/weatherstation/cloud_measuring.shtml

Bromberg, P. A. (2016). Mechanisms of the acute effects of inhaled ozone in humans. Biochimica et Biophysica Acta (BBA) - General Subjects, 1860(12), 2771–2781. https://doi.org/10.1016/J.BBAGEN.2016.07.015

Contreras Pimentel, L. A., García González, J. M., Villegas Martínez, R. C & García Saldívar, V. M. (2019). Radiación solar en la ciudad de Zacatecas evaluada en el periodo comprendido del 01 de enero al 31 de diciembre de 2012. X Jornada de Ciencias Químicas. https://revistas.uaz.edu.mx/index.php/JCQ/article/view/556

Cheng, I., Mamum, A. A. & Zhang, L. (2021). A synthesis review on atmospheric wet deposition of particulate elements: scavening ratios, solubility, and flux measurements. Environmental Reviews, 29(3): 340-353. https://doi.org/10.1139/er-2020-0118

Davies, M. E., & Singh, S. (1985). Thorney Island: its geography and meteorology. 11((ed.), Amsterdam, The Netherlands, Elsevier Sci. Publishers B.V., 1985, pp.91-124. (Chem. Engng. Mono), 91–124.

Diario Oficial de la Federación [DOF]. (1994). Norma Oficial Mexicana NOM-026-SSA1-1993. Salud ambiental. Criterio para evaluar la calidad del aire ambiente con respecto al plomo (Pb). Valor normado para la concentración de plomo (Pb) en el aire ambiente como medida de protección a la salud de la población. https://www.dof.gob.mx/nota_detalle.php?codigo=4780245&fecha=23/12/1994#gsc.tab=0

Diario Oficial de la Federación [DOF]. (2014). Norma Oficial Mexicana NOM-020-SSA1-2014, Salud ambiental. Valor límite permisible para la concentración de ozono (O3) en el aire ambiente y criterios para su evaluación. http://www.aire.cdmx.gob.mx/descargas/monitoreo/normatividad/NOM-020-SSA1-2014.pdf

Diario Oficial de la Federación [DOF]. (2019). Norma Oficial Mexicana NOM-022-SSA1-2019, Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al dióxido de azufre (SO2). Valores normados para la concentración de dióxido de azufre (SO2) en el aire ambiente, como medida de protección a la salud de la población. https://www.dof.gob.mx/nota_detalle.php?codigo=5568395&fecha=20/08/2019#gsc.tab=0

Diario Oficial de la Federación [DOF]. (2021a). Norma Oficial Mexicana NOM-025-SSA1-2021, Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto a las partículas suspendidas PM10 y PM2.5. Valores normados para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente, como medida de protección a la salud de la población. https://dof.gob.mx/nota_detalle.php?codigo=5633855&fecha=27/10/2021#gsc.tab=0

Diario Oficial de la Federación [DOF]. (2021b). Norma Oficial Mexicana NOM-021-SSA1-2021, Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al monóxido de carbono (CO). Valores normados para la concentración de monóxido de carbono (CO) en el aire ambiente, como medida de protección a la salud de la población. https://www.dof.gob.mx/nota_detalle.php?codigo=5634084&fecha=29/10/2021#gsc.tab=0

Diario Oficial de la Federación [DOF]. (2021c). Norma Oficial Mexicana NOM-023-SSA1-2021, Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al dióxido de nitrógeno (NO2). Valores normados para la concentración de dióxido de nitrógeno (NO2) en el aire ambiente, como medida de protección a la salud de la población. https://dof.gob.mx/nota_detalle.php?codigo=5633854&fecha=27/10/2021#gsc.tab=0

Escalona-Alcázar, F. de J. E., Escobedo-Arellano, B., Castillo-Félix, B., García-Sandoval, P., Gurrola-Menchaca, L. L., Carrillo-Castillo. C., Núñez-Peña, E., Gutiérrez-Bluhm, J. & Esparza-Martínez, A. (2012). A Geologic and Geomorphologic Analysis of the Zacatecas and Guadalupe Quadrangles in Order to Define Hazardous Zones Associated with the Erosion Processes. . In (Ed.), Sustainable Development - Authoritative and Leading Edge Content for Environmental Management. IntechOpen. https://doi.org/10.5772/45852

Essa, K.S.M., Embaby, M., Mubarak, F. and Kamel, I. (2013) Estimation of seasonal atmospheric stability and mixing height by using different schemes. International Journal of Advanced Research, 1(9), 429–438. https://www.osti.gov/etdeweb/biblio/20935494

Flores-Jiménez, D. E., García-Cueto, O. R., Santillán-Soto, N., López-Velázquez J. E. & Camargo-Bravo, A. (2021). Influence of mixing height and atmospheric stability conditions on correlation of NO2 columns and surface concentrations in a Mexico-United States border region. Atmospheric Science Letters, 22 (6): 1-12, https://doi.org/10.1002/asl.1024

Hunter, C. A. (2012). RECOMMENDED PASQUILL-GIFFORD STABILITY CLASSIFICATION METHOD FOR SAFETY BASIS ATMOSPHERIC DISPERSION MODELING AT SRS. United States. https://doi.org/10.2172/1037732

Wind and weather statistics Zacatecas/La Bufa - Windfinder. (n.a.). Retrieved May 29, 2021, from https://es.windfinder.com/windstatistics/zacatecas_la-bufa

Gómez, F., & Valcarce, J. (2003). Toxics detected in fire-related deaths and carbon monoxide poisoning. Rev. Toxicol. , 20, 38–42.

Instituto Nacional de Ecología y Cambio Climático [INECC]. (2014). Valoración económica de los beneficios a la salud de la población que se alcanzarían por la reducción de las PM2.5 en tres zonas metropolitanas mexicanas.

Instituto Nacional de Estadística y Geografía [INEGI]. (2000). Geostatistical Framework. https://web.archive.org/web/20050924205802/http://mapserver.inegi.gob.mx/geografia/espanol/estados/zac/ubic_geo.cfm

Instituto Nacional de Estadística y Geografía [INEGI]. (2020). Number of inhabitants. http://cuentame.inegi.org.mx/monografias/informacion/zac/poblacion/default.aspx?tema=me&e=32

Educational Infrastructure, & Ministry of Public Education. (2015). Structural Safety (Vol. 4). https://www.cmic.org.mx/comisiones/Sectoriales/normateca/INIFED/03_Normatividad_Técnica/02_Normas_y_Especificaciones_para_Estudios/04_Volumen_4_Seguridad_Estructural/Volumen_4_Tomo_III.pdf

Jacob, D. J. (2000). Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34(12–14), 2131–2159. https://doi.org/10.1016/S1352-2310(99)00462-8

Kahl, J. D. W., & Chapman, H. L. (2018). Atmospheric stability characterization using the Pasquill method: A critical evaluation. Atmospheric Environment, 187(May), 196–209. https://doi.org/10.1016/j.atmosenv.2018.05.058

Koren, H. S., Devlin, R. B., Graham, D. E., Mann, R., McGee, M. P., Horstman, D. H., Kozumbo, W. J., Becker, S., House, D. E., McDonnell, W. F., & Bromberg, P. A. (2012). Ozone-induced Inflammation in the Lower Airways of Human Subjects. Http://Dx.Doi.Org/10.1164/Ajrccm/139.2.407, 139(2), 407–415. https://doi.org/10.1164/AJRCCM/139.2.407

The dispersion of pollutants. (n.a.). Retrieved April 15, 2021, from https://www.ceupe.com/blog/la-dispersion-de-los-contaminantes.html

Li, J., Lv, Q., Jian, B. Zhang, M., Zhao, C., Fu, Q., Kawamoto, K. & Zhang, H. (2018). The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau. Atmospheric Chemistry and Physics, 18: 7329-7343. https://doi.org/10.5194/acp-18-7329-2018

Long, B., Bao, J. L., Truhlar, D. G. (2017). Reaction of SO2 with OH in the atmosphere. Physical Chemistry Chemical Physics, 19: 8091-8100. http://dx.doi.org/10.1039/C7CP00497D

Met One Instruments, Inc. (2016). BAM 1020 Particulate matter monitor. Operation manual. BAM 1020-9800 Rev W. https://metone.com/wp-content/uploads/2019/05/BAM-1020-9800-Manual-Rev-W.pdf

Moragues. (2002). 'Stability Classification and Mixing Layers. 8.

Pinedo V., J. L., Mireles G., F., Ríos M. C., Quirino T., L. L., Dávila R., J. I. Spectral signature of ultraviolet solar irradiance in Zacatecas. Geofísica Internacional. 45(4): 263-269. https://www.redalyc.org/pdf/568/56845405.pdf

Liverman, D. M., & O'Brien, K. L. (1991). Global warming and climate change in Mexico. Global Environmental Change, 1(5), 351–364. https://doi.org/10.1016/0959-3780(91)90002-B

Ortiz-Gómez, R., Cardona-Díaz, J. C., Ortiz-Robles, Fidel A., Alvarado-Medellín, P. (2018). Characterization of droughts by comparing three multiscales indices in Zacatecas, Mexico. Tecnología y ciencias del agua. 9(3):47-91. https://doi.org/10.24850/j-tyca-2018-03-03

Rodríguez, L., & Romero K.J. (2018). MULTITEMPORAL ANALYSIS OF STABILITY AND METEOROLOGICAL CONDITIONS FOR THE MANAGEMENT OF ATMOSPHERIC RESOURCES IN.

Rodríguez Mejía, J. F., Prieto, A. W., Chávez, A. V., Villela Varela, R., López Monteagudo, F. E. & Reyes Rivas C. (2022). Estimation of solar radiation in Northwest Mexico based on the Angstrom model and polynomial regression. Ingeniería Energética, XVIII(1): 35-47. https://www.redalyc.org/journal/3291/329170676004/html/

Sigala Valdez, J. O. Modelo de seguimiento escalonado solar con diferentes ángulos de aceptación para diversos esquemas de concentración solar (2020). Tesis. Universidad Autónoma de Zacatecas. Red de Repositorios Latinoamericanos. https://repositorioslatinoamericanos.uchile.cl/handle/2250/4247832

Seinfeld, J. H. & Pandis, S. N. (2016). Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. Wiley-Interscience Publication. John Wiley & Sons, Inc. ISBN: 0-471-17815-2. Pp. 1326.

Secretaría del Agua y Medio Ambiente y Secretaría de Medio Ambiente y Recursos Naturales [SAMA & SEMARNAT]. (2018). Programa de Gestión para Mejorar la Calidad del Aire del Estado de Zacatecas 2018-2028. Pp. 271 http://dsiappsdev.semarnat.gob.mx/datos/portal/proaire/33_ProAire%20Zacatecas.pdf

Secretaría de Marina [SEMAR]. (2001). Retrieved May 29, 2021, https://meteorologia.semar.gob.mx/meteorologia/escalas.html

Schenelle, K. ., & Dey, P. R. (2000). Atmospheric dispersion modeling compliance guide. In McGraw-Hill companies.

Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT]. (2018). Environment Report. https://apps1.semarnat.gob.mx:8443/dgeia/informe18/tema/cap5.html

Serinus. (2022). Sulfure Dioxide Analyser. User Manual. Version: 3.3. https://www.ecotech.com/product/gases/ambient-trace/so2-analyser/

Serinus. (2013a). Serinus 10. Ozone Analyser. User Manual. Version:2.2. https://www.ecotech.com/product/gases/ambient-trace/ozone-analyser/

Serinus. (2013b). Serinus 30. Carbon Monoxide Analyser. User Manual. Version:2.2. https://www.ecotech.com/product/gases/ambient-trace/co-analyser/

Serinus. (2013c). Serinus 40. Oxides of Nitrogen Analyser. User Manual. Version:2.2. https://www.ecotech.com/product/gases/ambient-trace/nitrogen-dioxide/

Sperber. M. (1999). Difuse Lung Disorders: A comprehensive clinicalradiological overview.

Springer. 42. https://books.google.com.mx/books?hl=es&lr=&id=1brkBwAAQBAJ&oi=fnd&pg=PR9&dq=Diffuse+Lung+Disorders:+A+comprehensive+clinical+radiological+overview&ots=dDizxAVVZG&sig=i0XxSZuqCzAX9kF-pswlBh3uqwc#v=onepage&q=Diffuse%20Lung%20Disorders%3A%20A%20comprehensive%20clinical%20radiological%20overview&f=false

The orography and the wind: geographical effects. (2000). 1–24.

Wang, Jacob, y Logan. (1998). Global simulation of tropospheric O3v -NOx -hydrocarbon chemistry, 3. Origin of tropospheric ozone and e!ects of non-methane hydrocarbons. Journal of Geophysical Research, 103.

World Health Organization [WHO]. (2018). World Health Organization releases new global air pollution data. https://www.ccacoalition.org/en/news/world-health-organization-releases-new-global-air-pollution-data

Zoras, S., Triantafyllou, A. G., & Deligiorgi, D. (2006). Atmospheric stability and PM10 concentrations at far distance from elevated point sources in complex terrain: Worst-case episode study. Journal of Environmental Management, 80(4), 295–302. https://doi.org/10.1016/j.jenvman.2005.09.010

Downloads

Published

2022-11-28

How to Cite

Ramírez-Díaz, V., Aguilera-Flores, M. M., Flores-Jiménez, D. E., & Ávila-Vázquez, V. (2022). Estimation of atmospheric stability for the city of Zacatecas, Mexico. Renewable Energy, Biomass & Sustainability, 4(2), 24–43. https://doi.org/10.56845/rebs.v4i2.68

Issue

Section

Original Articles