Optimization of anaerobic digestion under psychrophilic conditions using plant biofilms: evaluation of biogas yield and quality in a rural tubular biodigester

PDF downloads: 42

Authors

DOI:

https://doi.org/10.56845/rebs.v7i2.658

Keywords:

lianas, HRT, Gompertz, methanogenesis, biofertilizers

Abstract

This study evaluates the performance of a tubular biodigester operating in psychrophilic conditions, incorporating plant lianas as biofilm support to improve the anaerobic digestion of bovine manure. A 12 m³ biodigestion system was constructed in Chachapoyas, Peru, and loaded with a manure:water mixture (1:5). Physicochemical parameters, the production and quality of biogas, were monitored, and the study applied the Gompertz model to describe the kinetic behavior. The results show that, despite operating at average temperatures of 16.95 °C, the system reached its hydraulic retention time (HRT) in just 15 days, generating 3 m³ of biogas with a daily production of 0.2–0.3 m³. Purification reduced H2S by 75 % and purified methane reached 68.18 %, its suitability for domestic energy use. The Gompertz model adequately adjusted the data (R² = 0.9992), projecting a potential production of 3.89 m³. The use of plant biofilms improved microbial retention and process stability, suggesting a low-cost solution with high replicability in cold rural areas.

References

Abdurrakhman, A., Sutiarso, L., Ainuri, M., Ushada, M., & Islam, M. P. (2024). Design of a pressure control system in biogas reactor based on PID controller with Ziegler–Nichols and auto tuning PSO. Jurnal Otomasi Kontrol dan Instrumentasi, 16(2), 104–116. https://doi.org/10.5614/JOKI.2024.16.2.5

Abendroth, C., Latorre-Pérez, A., Porcar, M., Simeonov, C., Luschnig, O., Vilanova, C., & Pascual, J. (2020). Shedding light on biogas: Phototrophic biofilms in anaerobic digesters hold potential for improved biogas production. Systematic and Applied Microbiology, 43(1), 126024. https://doi.org/10.1016/j.syapm.2019.126024

Abera, G. B., Trømborg, E., Solli, L., Walter, J. M., Wahid, R., Govasmark, E., Horn, S. J., Aryal, N., & Feng, L. (2024). Biofilm application for anaerobic digestion: A systematic review and an industrial scale case. Biotechnology for Biofuels and Bioproducts, 17(1), 1–20. https://doi.org/10.1186/s13068-024-02592-4

Adamu, A. A., James, J. G., Olupinla, F. S., & Iyanda, P. O. (2025). Modelling biogas production from organic waste substrates using the Gompertz equation: Parameter estimation and methane composition analysis (Issue 1).

Alvarez, R., & Lidén, G. (2008). The effect of temperature variation on biomethanation at high altitude. Bioresource Technology, 99(15), 7278–7284. https://doi.org/10.1016/j.biortech.2007.12.055

Aremanda, R. B., Debretsion, S., Tesfalem, S., & Menghisteab, R. (2023). Competence of cow manure as a sustainable feedstock for bioenergy and biofertilizer production. International Journal on Food, Agriculture and Natural Resources, 4(2), 59–67. https://doi.org/10.46676/ij-fanres.v4i2.135

Aridi, R., & Yehya, A. (2024). Anaerobic biodigesters heating sources: Analysis and recommendations. Renewable and Sustainable Energy Reviews, 202, 114700. https://doi.org/10.1016/j.rser.2024.114700

Arıman, S., & Koyuncu, S. (2022). Removal of hydrogen sulfide in biogas from wastewater treatment sludge by real-scale biotrickling filtration desulfurization process. Water Practice and Technology, 17(7), 1406–1420. https://doi.org/10.2166/wpt.2022.072

Babaei, A., & Shayegan, J. (2019). Effects of temperature and mixing modes on the performance of municipal solid waste anaerobic slurry digester. Journal of Environmental Health Science and Engineering, 17(2), 1077–1084. https://doi.org/10.1007/s40201-019-00422-6

Bahrun, M. H. V., Bono, A., Othman, N., & Zaini, M. A. A. (2022). Carbon dioxide removal from biogas through pressure swing adsorption – A review. Chemical Engineering Research and Design, 183, 285–306. https://doi.org/10.1016/j.cherd.2022.05.012

Barrena, M. A., Maicelo, J. L., Gamarra, O. A., Oliva, M., Leiva, S., Taramona, L. A., Huanes, M. A., & Ordinola, C. M. (2019). Biogas production and applications.

Biogasclean. (2016). Safe injection of air or pure oxygen into biogas. Recuperado de https://www.biogasclean.com

Cayetano, R. D. A., Kim, G. B., Park, J., Yang, Y. H., Jeon, B. H., Jang, M., & Kim, S. H. (2022). Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery. Bioresource Technology, 344, 126309. https://doi.org/10.1016/j.biortech.2021.126309

Chavez, S. P., & Takahashi, K. (2017). Orographic rainfall hot spots in the Andes–Amazon transition according to the TRMM precipitation radar and in situ data. Journal of Geophysical Research, 122(11), 5870–5882. https://doi.org/10.1002/2016JD026282

Esparza-Soto, M., Alcaraz-Ibarra, S., Lucero-Chávez, M., Jiménez-Moleón, M. del C., Mier-Quiroga, M. de los A., & Fall, C. (2025). First derivative of Gompertz equation: Identification of substrate fractions in psychrophilic anaerobic digestion. Biocatalysis and Agricultural Biotechnology, 66, 103595. https://doi.org/10.1016/j.bcab.2025.103595

Feghhipour, S. E., Hatamipour, M. S., Amiri, H., & Nosrati, M. (2024). Continuous biogas production and ex-situ biomethanation in a trickling bed bioreactor under mesophilic and thermophilic conditions. Process Safety and Environmental Protection, 190, 1440–1449. https://doi.org/10.1016/j.psep.2024.07.095

Ferrer, I., Gamiz, M., Almeida, M., & Ruiz, A. (2009). Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru). Waste Management, 29(1), 168–173. https://doi.org/10.1016/j.wasman.2008.02.014

Ferrer, I., Garfí, M., Uggetti, E., Ferrer-Martí, L., Calderón, A., & Velo, E. (2011). Biogas production in low-cost household digesters at the Peruvian Andes. Biomass and Bioenergy, 35(5), 1668–1674. https://doi.org/10.1016/j.biombioe.2010.12.036

Ferrer, I., Uggetti, E., Poggio, D., Martí, J., & Velo, E. (2015). Production of biogas from organic waste in low-cost biodigesters. Recuperado de http://www.upc.edu/grecdh

Garfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599–614. https://doi.org/10.1016/j.rser.2016.01.071

Gerardi, M. H. (2003). The microbiology of anaerobic digesters. https://doi.org/10.1002/0471468967

Gong, W. J., Liang, H., Li, W. Z., & Wang, Z. Z. (2011). Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure. Energy, 36(5), 3572–3578. https://doi.org/10.1016/j.energy.2011.03.068

Hadiyanto, H., Octafalahanda, F. M., Nabila, J., Jati, A. K., Christwardana, M., Kusmiyati, K., & Khoironi, A. (2023). Preliminary observation of biogas production from a mixture of cattle manure and bagasse residue in different composition variations. International Journal of Renewable Energy Development, 12(2), 390–395. https://doi.org/10.14710/ijred.2023.52446

Hagos, G. K., Golie, W. M., Belete, F. A., & Gidey, Y. H. (2025). Biogas upgrading produced through anaerobic co-digestion of organic biowastes: A comparative study. Biomass Conversion and Biorefinery, 1–23. https://doi.org/10.1007/s13399-025-06757-5

Kafle, G. K., & Chen, L. (2016). Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Management, 48, 492–502. https://doi.org/10.1016/j.wasman.2015.10.021

Karne, H., & Bhatkhande, D. (2022). Effect of mixing and agitator type on biogas production from food waste in a pilot plant digester. Waste and Biomass Valorization, 13(4), 1885–1895. https://doi.org/10.1007/s12649-021-01633-5

Kashyap, D. R., Dadhich, K. S., & Sharma, S. K. (2003). Biomethanation under psychrophilic conditions: A review. Bioresource Technology, 87(2), 147–153. https://doi.org/10.1016/S0960-8524(02)00205-5

Kasinath, A., Fudala-Ksiazek, S., Szopinska, M., Bylinski, H., Artichowicz, W., Remiszewska-Skwarek, A., & Luczkiewicz, A. (2021). Biomass in biogas production: Pretreatment and codigestion. Renewable and Sustainable Energy Reviews, 150, 111509. https://doi.org/10.1016/j.rser.2021.111509

Kavan Kumar, V., Mahendiran, R., Subramanian, P., Karthikeyan, S., Surendrakumar, A., Kumargouda, V., Ravi, Y., Choudhary, S., Singh, R., & Verma, A. K. (2023). Optimization of biogas potential using kinetic models, response surface methodology, and instrumental evidence for biodegradation of tannery fleshings during anaerobic digestion. Open Life Sciences, 18(1). https://doi.org/10.1515/biol-2022-0721

Kinyua, M. N., Rowse, L. E., & Ergas, S. J. (2016). Review of small-scale tubular anaerobic digesters treating livestock waste in the developing world. Renewable and Sustainable Energy Reviews, 58, 896–910. https://doi.org/10.1016/j.rser.2015.12.324

Li, S, Ou, X., Wang, D., & Wang, W. (2025). Optimizing biogas production from swine manure: Biogas recirculation coupled with pH adjustment to mitigate lime inhibition. Process Safety and Environmental Protection, 198, 107234. https://doi.org/10.1016/j.psep.2025.107234

Lindmark, J., Thorin, E., Bel Fdhila, R., & Dahlquist, E. (2014). Effects of mixing on the result of anaerobic digestion: Review. Renewable and Sustainable Energy Reviews, 40, 1030–1047. https://doi.org/10.1016/j.rser.2014.07.182

Liu, Y., Wang, T., Xing, Z., Ma, Y, Nan, F., Pan, L., & Chen, J. (2022). Anaerobic co-digestion of Chinese cabbage waste and cow manure at mesophilic and thermophilic temperatures: Digestion performance, microbial community, and biogas slurry fertility. Bioresource Technology, 363, 127976. https://doi.org/10.1016/j.biortech.2022.127976

Lohani, S. P., & Havukainen, J. (2018). Anaerobic digestion: Factors affecting anaerobic digestion process. En Energy, environment, and sustainability (pp. 343–359). https://doi.org/10.1007/978-981-10-7413-4_18

Marengo, J. A., Tomasella, J., Soares, W. R., Alves, L. M., & Nobre, C. A. (2012). Extreme climatic events in the Amazon basin. Theoretical and Applied Climatology, 107(1–2), 73–85. https://doi.org/10.1007/s00704-011-0465-1

Marle, N. van. (1997). Characterization of changes in potato tissue during cooking in relation to texture development.

Martí-Herrero, J., Chipana, M., Cuevas, C., Paco, G., Serrano, V., Zymla, B., Heising, K., Sologuren, J., & Gamarra, A. (2014). Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia. Renewable Energy, 71, 156–165. https://doi.org/10.1016/j.renene.2014.05.036

Mohmed Moffit, M. A., Suja’, F., Kabir Ahmad, I., & Bhaskaran, A. N. (2025). Biogas production and reactor performance of a pilot scale anaerobic biofilm digester treating food waste. Renewable Energy, 243, 122414. https://doi.org/10.1016/j.renene.2025.122414

Nallamothu, R. B., Teferra, A., & Rao, B. V. A. (2013). Biogas purification, compression and bottling (Vol. 2, Issue 6).

Ni, J. Q. (2024). A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents. Renewable and Sustainable Energy Reviews, 197, 114371. https://doi.org/10.1016/j.rser.2024.114371

Njoki, M. K., Ergas, S. J., Cunningham, J., & Wilkie, A. C. (2013). Effect of solids retention time on the denitrification potential of anaerobically digested swine waste.

Ofon, U. A., Ndubuisi-Nnaji, U. U., Udofia, G. E., Adegoke, A. A., Orji, E. E., Ekaette, M. I., Ukot, C. A., Offiong, N. A. O., Fapojuwo, D. P., & Shaibu, S. E. (2025). Optimization of biogas production with rice straw-derived biochar: Characterization, hormetic effects, and kinetics modelling. Cleaner Waste Systems, 11, 100288. https://doi.org/10.1016/j.clwas.2025.100288

Ortega-Castro, J., Herrera-Brunett, G. A., Frey E, C., Oswaldo, J., & Castro, O. (2025). Generation of biogas from solid waste from cattle at the Tunshi Experimental Station. Journal of Natural Resources Production and Sustainability, 4(1), 54–74. https://doi.org/10.61236/renpys.v4i1.1020

Pasalari, H., Esrafili, A., Rezaee, A., Gholami, M., & Farzadkia, M. (2021). Electrochemical oxidation pretreatment for enhanced methane potential from landfill leachate in anaerobic co-digestion process: Performance, Gompertz model, and energy assessment. Chemical Engineering Journal, 422, 130046. https://doi.org/10.1016/j.cej.2021.130046

Pera, L., Gandiglio, M., Marocco, P., Pumiglia, D., & Santarelli, M. (2024). Trace contaminants in biogas: Biomass sources, variability and implications for technology applications. Journal of Environmental Chemical Engineering, 12(6), 114478. https://doi.org/10.1016/j.jece.2024.114478

Petro, L. (2020). Optimization of domestic biogas stove burner for efficient energy utilization. https://doi.org/10.58694/20.500.12479/1300

Physics Stack Exchange. (2025). Physics of boiling an egg – What am I missing? (heat capacity and coagulation question). Recuperado de https://physics.stackexchange.com/questions/243496/physics-of-boiling-an-egg-what-am-i-missing-heat-capacity-and-coagulation-qu

Pilarski, G., Kyncl, M., Stegenta, S., & Piechota, G. (2020). Emission of biogas from sewage sludge in psychrophilic conditions. Waste and Biomass Valorization, 11(7), 3579–3592. https://doi.org/10.1007/s12649-019-00707-9

Poveda, G., Espinoza, J. C., Zuluaga, M. D., Solman, S. A., Garreaud, R., & van Oevelen, P. J. (2020). High impact weather events in the Andes. Frontiers in Earth Science, 8, 162. https://doi.org/10.3389/feart.2020.00162

Rajendran, K., Aslanzadeh, S., & Taherzadeh, M. J. (2012). Household biogas digesters—A review. Energies, 5(8), 2911–2942. https://doi.org/10.3390/en5082911

Ramaiyulis, U., Mohtar Lutfi, R., Hendriani, R., & Nefri, J. (2021). Biogas installations for harvesting energy and utilization of natural fertilisers. International Journal of Scientific & Technology Research, 10(1), 1–14. https://doi.org/10.1515/agriceng-2020-0001

Rascón, J., Gosgot Angeles, W., Quiñones Huatangari, L., Oliva, M., & Barrena Gurbillón, M. Á. (2021). Dry and wet events in Andean populations of northern Peru: A case study of Chachapoyas, Peru. Frontiers in Environmental Science, 9, 614438. https://doi.org/10.3389/fenvs.2021.614438

Ravikumar, D., Hoysall, C. N., & Dasappa, S. (2020). Predicting biomethanation pattern from feedstock composition for biomass residues. En Bioresource utilization and bioprocess (pp. 75–79). https://doi.org/10.1007/978-981-15-1607-8_8

Riau, V., De la Rubia, M. Á., & Pérez, M. (2010). Temperature-phased anaerobic digestion (TPAD) to obtain class A biosolids: A semi-continuous study. Bioresource Technology, 101(8), 2706–2712. https://doi.org/10.1016/j.biortech.2009.11.101

Rivas-Solano, O., Faith-Vargas, M., & Guillén-Watson, R. (2016). Biodigesters: Chemical, physical and biological factors related to their productivity. Revista Tecnología en Marcha, 29(5), 47–53. https://doi.org/10.18845/tm.v29i5.2516

Rodríguez-Jiménez, L. M., Pérez-Vidal, A., & Torres-Lozada, P. (2022). Research trends and strategies for the improvement of anaerobic digestion of food waste in psychrophilic temperature conditions. Heliyon, 8(10), e11174. https://doi.org/10.1016/j.heliyon.2022.e11174

SENAMHI. (2025). Chachapoyas weather forecast. Recuperado de https://www.senamhi.gob.pe/?p=pronostico-detalle&dp=01&localidad=0012

Shinde, S., Mangate, L., Gokhale, D., Dongardive, S., Dugge, A., Gaikwad, S., & Garware, P. (2024). Domesticating biogas – A viable alternative to LPG in India. International Research Journal on Advanced Engineering and Management (IRJAEM), 2(05), 1353–1360. https://doi.org/10.47392/irjaem.2024.0186

Song, Y., Qiao, W., Westerholm, M., Huang, G., Taherzadeh, M. J., & Dong, R. (2023). Microbiological and technological insights on anaerobic digestion of animal manure: A review. Fermentation, 9(5), 436. https://doi.org/10.3390/fermentation9050436

Swinbourn, R., Li, C., & Wang, F. (2024). A comprehensive review on biomethane production from biogas separation and its techno-economic assessments. ChemSusChem, 17(19), e202400779. https://doi.org/10.1002/cssc.202400779

Tian, P., Gong, B., Bi, K., Liu, Y., Ma, J., Wang, X., Ouyang, Z., & Cui, X. (2023). Anaerobic co-digestion of pig manure and rice straw: Optimization of process parameters for enhancing biogas production and system stability. International Journal of Environmental Research and Public Health, 20(1), 804. https://doi.org/10.3390/ijerph20010804

Tiwari, B. R., Rouissi, T., Brar, S. K., & Surampalli, R. Y. (2021). Critical insights into psychrophilic anaerobic digestion: Novel strategies for improving biogas production. Waste Management, 131, 513–526. https://doi.org/10.1016/j.wasman.2021.07.002

Wu, J., Zhang, H., Zhao, Y., Yuan, X., & Cui, Z. (2023). Characteristics of biogas production activity and microbial community during sub-moderate temperature anaerobic digestion of wastewater. Fermentation, 9(10). https://doi.org/10.3390/fermentation9100903

Xu, Z., & Chang, L. (2017). Identification and control of common weeds: Volume 3 (Vol. 3, pp. 1–944).

https://doi.org/10.1007/978-981-10-5403-7

Zhang, B., Liu, J., Cai, C., & Zhou, Y. (2025). Membrane photobioreactor for biogas capture and conversion – Enhanced microbial interaction in biofilm. Bioresource Technology, 418, 131999. https://doi.org/10.1016/j.biortech.2024.131999

Downloads

Published

2025-12-13

How to Cite

Altamirano-Cubas, A., Vergara Medina, G. A., Gosgot Angeles, W., & Iliquin-Fernandez, R. E. (2025). Optimization of anaerobic digestion under psychrophilic conditions using plant biofilms: evaluation of biogas yield and quality in a rural tubular biodigester. Renewable Energy, Biomass & Sustainability, 7(2), 28–39. https://doi.org/10.56845/rebs.v7i2.658

Issue

Section

Original Articles