Cost analysis and manufacturing process of blade prototypes with different structural configurations for a 1 kW H-type vertical axis wind turbine.
DOI:
https://doi.org/10.56845/rebs.v7i2.643Keywords:
VAWT, composite materials enhancement, VARTM procedure, blade manufacture, cost analysisAbstract
This article analyzes the costs associated with the manufacturing processes of prototype blades, each measuring 2 meters in length and featuring a NACA 0015 aerodynamic profile, with different structural configurations for a 1 kW H-type vertical axis wind turbine (VAWT). The research identifies the material costs and mass of the blades in order to optimize their manufacturing and achieve efficient performance. The objective is to improve resource efficiency in both research and industrial processes. Two manufacturing methods are evaluated: hand lay-up molding (Prototype A) and vacuum-assisted resin transfer molding (VARTM, Prototypes B and C). The evaluation criteria included manufacturing cost, weight, and quality. Prototype A, a single-piece blade with an EPS core, showed the lowest mass (5.11 kg) and cost, though it required significant surface repairs due to resin slippage, which could affect aerodynamic performance. Prototypes B and C, produced by VARTM with a double-shell design, achieved superior surface quality and a controlled fiber-to-resin ratio (100:50). Prototype B weighed 5.81 kg, while Prototype C, reinforced with a polyurethane core for greater rigidity, was the heaviest at 7.22 kg. However, their manufacturing costs were considerably higher: 215% (B) and 312% (C) compared to Prototype A, mainly due to the use of specialized materials. The results highlight the trade-offs between cost, mass, and quality, offering a reference for the development of structurally efficient and economically viable VAWT blades for urban applications. The conclusions are especially relevant for guiding future design and manufacturing decisions for VAWTs intended to operate in challenging environments characterized by turbulent and low-speed winds.
References
Alvarado, M. I. (2023). Análisis aeroelástico de detalle para el rediseño estructural del laminado con materiales compuestos de un aspa para un aerogenerador de 30 kW. UAEMéx: Universidad Autónoma del Estado de México.
Bai, T., Liu, J., Zhang, W., & Zou, Z. (2014). Effect of surface roughness on the aerodynamic performance of turbine blade cascade. Propulsion and Power Research, 3(2), 82–89, https://doi.org/10.1016/j.jppr.2014.05.001
Boo, S.Y., Shelley, S.A., Griffith, D.T., & Escalera Mendoza, A.S. (2023). Responses of a Modular Floating Wind TLP of MarsVAWT Supporting a 10 MW Vertical Axis Wind Turbine. Wind, 3, 513–544, https://doi.org/10.3390/wind3040029
Brandetti, L. (2024). Design for urban vertical-axis wind turbines: balancing performance and noise. TU Delf: Delft University of Technology, https://doi.org/10.4233/uuid:812de44e-36fb-4e5d-acf7-973f38d965de
Budzik, M. K., Wolfahrt, M., Reis, P., Kozłowski, M., Sena-Cruz, J., Papadakis, L., Nasr Saleh, M., Machalicka, K. V., Teixeira de Freitas, S., & Vassilopoulos, A. P. (2021). Testing mechanical performance of adhesively bonded composite joints in engineering applications: an overview. Journal of Adhesion, 98(14), 2133-2209, https://doi.org/10.1080/00218464.2021.1953479
Chawla, K. K. (2019). Composite materials: science and applications (4th ed). Springer.
COMEX. (2024). Carta técnica: U-10 Recubrimiento de Poliuretano de Altos Sólidos. [Archivo PDF], https://www.comex.com.mx/getattachment/f5bca495-8d9a-42d2-92e8 a83c9ce7292c/.aspx/. Consultado el 24 de febrero de 2024.
Cuevas-Carvajal, N., et al. (2022). Effect of geometrical parameters on the performance of conventional Savonius VAWT: A review. Renewable and Sustainable Energy Reviews, 161, 112314, https://doi.org/10.1016/j.rser.2022.112314
Devin, M., Mendoza, N., Platt, A., Moore, K., Jonkman, J., & Ennis, B. (2023). Enabling Floating Offshore VAWT Design by Coupling OWENS and OpenFAST: Article No. 2462. Energies, 16(5), https://doi.org/10.3390/en16052462
Edwards, E. C., Holcombe, A., Brown, S., Ransley, E., Hann, M., & Greaves, D. (2024). Trends in floating offshore wind platforms: A review of early-stage devices. Renewable and Sustainable Energy Reviews, 193, 114271, https://doi.org/10.1016/j.rser.2023.114271
Geneid, A.A., Atia, M.R.A. & Badawy, A. (2022). Multi-objective optimization of vertical-axis wind turbine’s blade structure using genetic algorithm. Journal of Engineering and Applied Science, 69, 90, https://doi.org/10.1186/s44147-022-00150-z
Ghigo, A., Faraggiana, E., Giorgi, G., Mattiazzo, G., & Bracco, G. (2024). Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review. Renewable and Sustainable Energy Reviews, 193, 114302, https://doi.org/10.1016/j.rser.2024.114302
Gurit. (2016). Guide to Composites: Delivering the future of composite solutions. Gurit
HEXION/Westlake Epoxy. (2023). Technical data sheet: EPIKOTETM Resin MGS ® 135G-Series
IEC. (2013). IEC 61400-2 Wind turbines – Part 2: Small wind turbines (edition 3.0).
IRENA. (2012). RENEWABLE ENERGY TECHNOLOGIES: COST ANALYSIS SERIES – Volume 1: Power sector Issue 5/5 Wind Power, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2012/RE_Technologies_Cost_Analysis-WIND_POWER.pdf. Consultado el 24 de octubre de 2024.
Juan, Y., Rezaeiha, A., Montazeri, H., Blocken, B., & Yang, A. (2024). Improvement of wind energy potential through building corner modifications in compact urban areas. Journal of Wind Engineering and Industrial Aerodynamics, 248, 105710, https://doi.org/10.1016/j.jweia.2024.105710
KUKDO. (2011). Technical data sheet: KUKDO Epoxy systems for composites. KUKDO CHEMICAL. CO., LTD.
Lee, C.H., Khalina, A., Nurazzi, et al (2021). The Challenges and Future Perspective of Woven Kenaf Reinforcement in Thermoset Polymer Composites in Malaysia: A Review. Polymers, 13, 1390, https://doi.org/10.3390/polym13091390
Marinić-Kragić, I., Vučina, D., & Milas, Z. (2022). Robust optimization of Savonius-type wind turbine deflector blades considering wind direction sensitivity and production material decrease. Renewable Energy, 192, 150-163, https://doi.org/10.1016/j.renene.2022.04.118
Marzec, Ł., Buliński, Z., Krysiński, T., & Tumidajski, J. (2023). Structural optimisation of H-Rotor wind turbine blade based on one-way Fluid Structure Interaction approach. Renewable Energy, 216, 118957, https://doi.org/10.1016/j.renene.2023.118957
Mendoza, V., Katsidoniotaki, E., & Bernhoff, H. (2020). Numerical Study of a Novel Concept for Manufacturing Savonius Turbines with Twisted Blades Energies, 13(8), 1874, https://doi.org/10.3390/en13081874
SAERTEX. (2022). Structural core material. [Archivo PDF], https://www.saertex.com/en/support/downloads. Consultado el 10 de febrero de 2022.
SAERTEX. (2022). Technical data sheet: U-E-1182g/m2-1270mm. [Archivo PDF], https://www.saertex.com/en/products/datasheet-glass. Consultado el 10 de febrero de 2024.
SAERTEX. (2022). Technical data sheet: X-E-832g/m2-1270mm. [Archivo PDF], https://www.saertex.com/en/products/datasheet-glass. Consultado el 10 de febrero de 2024.
Stoevesandt, Bernhard & Schepers, Gerard & Fuglsang, Peter & Yuping, Sun. (2020). Handbook of Wind Energy Aerodynamics. Springer.
Vidal-Flores, G., & Hernandez-Arriaga, I. (2024). Optimización aerodinámica para mejorar el par de arranque de una Turbina de Viento de Eje Vertical Savonius-Darrieus de 1 kW. Revista Ingeniería Mecánica Tecnología y Desarrollo, 7(5), 109-119. https://doi.org/10.59920/rimtd.20241m
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Giovanni Vidal-Flores, Farid Quijada-Escamilla, Jose Rafael Gomez-Bautista, Iasias Alvarado-Medrano

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright © D.R. Asociación Latinoamericana de Desarrollo Sustentable y Energías Renovables A. C.,