Bioethanol production from cheese whey

PDF downloads: 866

Authors

  • Fabiola Sandoval-Salas Laboratorio de investigación, Tecnológico Nacional de México, Perote, Veracruz, México
  • Anayeli Rendón-Ávila Laboratorio de investigación, Tecnológico Nacional de México, Perote, Veracruz, México
  • Antonio Janoary Alemán-Chang Laboratorio de investigación, Tecnológico Nacional de México, Perote, Veracruz, México
  • Carlos Méndez-Carreto Laboratorio de investigación, Tecnológico Nacional de México, Perote, Veracruz, México
  • Christell Barrales-Fernández Laboratorio de investigación, Tecnológico Nacional de México, Perote, Veracruz, México

DOI:

https://doi.org/10.56845/rebs.v3i2.58

Keywords:

bioethanol production, cheese whey, fermentation, pretreatment, hydrolysis

Abstract

During cheese production, a high volume of cheese whey are obtained (Gómez et al., 2019; Álvarez-Delgado and Otero-Rambla 2020). Cheese whey is rich in proteins of high nutritional value, such as β-lactoglobulins, α-lactalbumins, glycomacropeptides, immunoglobulins and protease-peptone (Krissansen, 2013; Wijayanti et al., 2014). Around 50% of the cheese whey produce around world have does not receive some type of treatment. Small and medium producers cannot acquire any technology to add value to this waste (Tavares y Malcata, 2016). Different investigations about exploitation of cheese whey have been developed. Cheese whey can be use in the biofuels production, such as ethanol, butanol, glycerol, methane, hydrogen, mainly. Besides, cheese whey has commercial value by the content of short chain fatty acids (Bourda et al., 2017; Ramos y Silva, 2017). In the present study, two types of pretreatment in cheese whey were evaluated (thermal and chemical deproteinized). The thermal treatments obtained higher yields in ethanol production (25.28 g per liter of cheese whey), in ferementation with Kluyveromyces marxianus. In the case of acid cheese whey without pretreatment, we obtained 22.12 g of ethanol per liter of cheese whey. In the enzymatic hydrolysis and fermentation with Saccharomyces cerevisiae, better yields were obtained in the thermal deproteinized pretreatment (18.96 g per liter of cheese whey).

References

Alvarez-Delgado, A., Otero-Rambla, M. A. 2020. 1 Potencialidad del suero de leche en biotecnologia (Potential of cheese whey in biotechnology) Amaury Álvarez. Revista Biorrefinería Vol, 3(3).

Amado, I.R., Vázquez, J.A., Pastrana, L., Teixeira, J.A., 2016. Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chemistry 198, 54–61. doi:10.1016/j.foodchem.2015.11.062

Anand, S., Nath, S. K., Marella, C., 2013. Whey and whey products. In: Milk and Dairy Products in Human Nutrition: Production, Composition and Health, First Edition. Edited by Young W. Park and George F.W. Haenlein.

A.O.A.C, 2005. Official Methods of Analysis, 18th ed. Association ofOfficial Analyst Chemists, Gaithersburg, MD, USA.

Boudjema K., Fazouane-Naimi F., Hellal A. 2015. Optimization of the bioethanol production on sweet cheese whey by Saccharomyces cerevisiae DIV13-Z087C0VS using response surface methodology (RSM). Romanian Biotechnological Letters 20:10814–10825.

Carrillo, H., 2003. Microbiología Agrícola, Argentina, Unas. 1-5 p.

Boura, K., Kandylis, P., Bekatorou, A., Kolliopoulos, D., Vasileiou, D., Panas, P., Kanellaki, M., Koutinas, A. A. (2017). New generation biofuel from whey: successive acidogenesis and alcoholic fermentation using immobilized cultures on γ-alumina. Energy Conversion and Management, 135, 256-260.

Collazos, C.C.J. y Diaz, B.M.C., 2003. Ensayos de biodegradabilidad anaerobia de efluentes cerveceros con lodo granular y lodo floculento. Revista Ingeniería e Investigación, 52, 54-62

Das, B., Roy, A.P., Bhattacharjee, S., Chakraborty, S., Bhattacharjee, C., 2015. Lactose hydrolysis by β-galactosidase enzyme: optimization using response surface methodology. Ecotoxicology and Environmental Safety 121, 244–252. doi:10.1016/j.ecoenv.2015.03.024

Dragone, G., Mussatto, S.I., Oliveira, J.M., Teixeira, J.A., 2009. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chemistry 112, 929–935. doi:10.1016/j.foodchem.2008.07.005

De Jesús-Andrade, E., Osorio-González, C., Sandoval-Salas, F., Ávalos-De La Cruz, D. 2016. Producción de bioetanol a partir de suero de queso proveniente de la región central del estado de Veracruz. Revista de Sistemas Experimentales, 3-9: 42-50. doi:

Gomez, G. A., Nagel, O. G., Althaus, R. L., Ceruti, R. J. 2019. Crecimiento y Características Fermentativas de Kluyveromyces marxianus en Matrices Derivadas de Lactosuero. VII Jornada de Difusión de la Investigación y Extensión.

Hadiyanto, Ariyanti, D., Aini, A.P., Pinundi, D.S., 2014. Optimization of Ethanol Production from Whey Through Fed-batch Fermentation Using Kluyveromyces Marxianus. Energy Procedia 47, 108–112. doi:10.1016/j.egypro.2014.01.203

Hublin, A., Zokić, T.I., Zelić, B., 2012. Optimization of biogas production from co-digestion of whey and cow manure. Biotechnology and Bioprocess Engineering 17, 1284–1293. doi:10.1007/s12257-012-0044-z

Kádár, Z., Christensen, A.D., Thomsen, M.H., Bjerre, A.-B., 2011. Bioethanol production by inherent enzymes from rye and wheat with addition of organic farming cheese whey. Fuel 90, 3323–3329. doi:10.1016/j.fuel.2011.05.023

Koutinas, A.A., Papapostolou, H., Dimitrellou, D., Kopsahelis, N., Katechaki, E., Bekatorou, A., Bosnea, L.A., 2009. Whey valorisation: A complete and novel technology development for dairy industry starter culture production. Bioresource Technology 100, 3734–3739. doi:10.1016/j.biortech.2009.01.058

Krissansen, G.W., 2013. Emerging Health Properties of Whey Proteins and Their Clinical Implications. Journal of the American College of Nutrition 26, 713S–723S. doi:10.1080/07315724.2007.10719652

Lowry O.H., Rosebrough N.J., Farr A.L. 1951. Protein measurement with the Folin phenol reagent. J biol Chem 193:265–275.

Miller, G. L., 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry 31 (3), 426-428.

Moreno, R., Fierro, J., Fernández, C., Cuetos, M.J., Gómez, X., 2015. Biohydrogen production from lactose: influence of substrate and nitrogen concentration. Environmental Technology 36, 2401–2409. doi:10.1080/09593330.2015.1032365

Morr, C.V., Ha, E.Y.W., 1993. Whey protein concentrates and isolates: Processing and functional properties, Critical Reviews in Food Science and Nutrition, 33 (6) 431-476

Mukhopadhyay, R., Talukdar, D., Chatterjee, B.P., Guha, A.K., 2003. Whey processing with chitosan and isolation of lactose. Process Biochemistry 39, 381–385. doi:10.1016/S0032-9592(03)00126-2

Navas, J.S.R., 2015. Aprovechamiento Industrial de Lactosuero Mediante Procesos Fermentativos. Publicaciones e Investigación 6, 69–83. Norma Oficial Mexicana NOM-155-SCFI-2003, Producto lácteo y producto lácteo combinado-Denominaciones, especificaciones fisicoquímicas, información comercial y métodos de prueba.

Norma Oficial Mexicana NMX-F-317-S-1978, Determinación de pH en alimentos.

Pacheco, José, Magaña, Aldo, Arranque de un reactor anaerobioIngeniería [en linea] 2003, 7 (enero-abril): Disponible en:<http://www.redalyc.org/articulo.oa?id=46770102> ISSN 1665-529X

Panesar, P., Kennedy, J., Gandhi, D., Bunko, K., 2007. Bioutilisation of whey for lactic acid production. Food Chemistry 105, 1–14. doi:10.1016/j.foodchem.2007.03.035

Pintado, M.E., Macedo, A.C., Malcata, F.X., 2001. Review: Technology, chemistry and microbiology of whey cheeses. Food. Sci. Tech. Int. 7 (2) 105-116

Park, S.J., Juárez, M., Ramos, M., Haenlein, G.F.W., 2007. Physico-chemical characteristics of goat and sheep milk. Small Ruminant Research 68, 88–113.

Ramos, L. R., Silva, E. L. (2017). Continuous hydrogen production from agricultural wastewaters at thermophilic and hyperthermophilic temperatures. Applied biochemistry and biotechnology, 182(2), 846-869.

Remón, J., Laseca, M., García, L., Arauzo, J., 2016. Hydrogen production from cheese whey by catalytic steam reforming: Preliminary study using lactose as a model compound. Energy Conversion and Management 114, 122–141. doi:10.1016/j.enconman.2016.02.009

Sarris, D., Papanikolaou, S., 2016. Biotechnological production of ethanol: Biochemistry, processes and technologies. Engineering in Life Sciences 16, 307–329. doi:10.1002/elsc.201400199

Smithers, G.W., 2015. Whey-ing up the options – Yesterday, today and tomorrow. International Dairy Journal 48, 2–14. doi:10.1016/j.idairyj.2015.01.011

Soriano-Perez, S., Flores-Velez, L., Alonso-Davila, P., Cervantes-Cruz, G., Arriaga, S., 2012. Production of lactic acid from cheese whey by batch cultures of Lactobacillus helveticus. Annals of Microbiology 62, 313–317. doi:10.1007/s13213-011-0264-z

Stanbury, P.F., Whitaker, A., Hall, S.J., 2013. Principles of Fermentation Technology. 4ta Ed. Elsevier Science Ltd. Great Britain.

Standard Methods for the Examination of Water and Wastewater., 1998. American Public Health Association.

Tavares, T., Malcata, F.X., 2016. Whey and Whey Powders: Fermentation of Whey, in: Encyclopedia of Food and Health. Elsevier, pp. 486–492. Valentino, F., Riccardi, C., Campanari, S., Pomata, D., Majone, M., 2015. Fate of β-hexachlorocyclohexane in the mixed microbial cultures (MMCs) three-stage polyhydroxyalkanoates (PHA) production process from cheese whey. Bioresource Technology 192, 304–311. doi:10.1016/j.biortech.2015.05.083

Wijayanti, H.B., Bansal, N., Deeth, H.C., 2014. Stability of Whey Proteins during Thermal Processing: A Review: Thermal stability of whey proteins. Comprehensive Reviews in Food Science and Food Safety 13, 1235–1251. doi:10.1111/1541-4337.12105

Yadav J.S.S., Yan S., Pilli S. 2015. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances 33:756–774. doi: 10.1016/j.biotechadv.2015.07.002

Zhong, J., Stevens, D.K., Hansen, C.L., 2015. Optimization of anaerobic hydrogen and methane production from dairy processing waste using a two-stage digestion in induced bed reactors (IBR). International Journal of Hydrogen Energy 40, 15470–15476. doi:10.1016/j.ijhydene.2015.09.085

Downloads

Published

2021-11-15

How to Cite

Sandoval-Salas, F., Rendón-Ávila, A., Alemán-Chang, A. J., Méndez-Carreto, C., & Barrales-Fernández, C. (2021). Bioethanol production from cheese whey. Renewable Energy, Biomass & Sustainability, 3(2), 84–93. https://doi.org/10.56845/rebs.v3i2.58

Issue

Section

Original Articles