Influence of light intensity on growth and flowering ornamental plants in constructed wetlands

PDF downloads: 160

Authors

  • Luis Carlos Sandoval-Herazo Division of Research, Postgraduate Studies and Innovation, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, Veracruz, México
  • Alejandro Alvarado-Lassman Division of Research, Postgraduate Studies and Innovation, Tecnológico Nacional de México/Tecnológico de Orizaba, Orizaba, Veracruz, México
  • Graciela Nani Department of Engineering in Business Management, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, Veracruz, México
  • Carlos Nakase-Rodríguez Division of Research, Postgraduate Studies and Innovation, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, Veracruz, México

DOI:

https://doi.org/10.56845/rebs.v2i2.25

Keywords:

intensity of light, ornamental plants, constructed wetlands, residual waters

Abstract

Light is an indispensable source for the photosynthesis of plants, but also for their growth and development. On the other hand, the production of ornamental plants requires multiple nutrients for their proper development, a source available in high concentrations in wastewater. Recent research on constructed wetlands (CWs) that use ornamental plants to treat wastewater and at the same time are used as a means of growth, is considered a sustainable alternative. This study evaluated the influence of light intensity on the growth and flowering of ornamental plants (Lavandula sp., Anthurium sp., Zantedeschia aethiopica and Spathiphyllum wallisii) in constructed wetlands, fed with domestic wastewater. 30 mesocosms of constructed wetlands were used as a culture medium for ornamental plants, the effect of light intensity on the development of the plants was measured, as well as the removal of Nitrogen (N-NO3), phosphate (P-PO4) and biochemical demand of oxygen (DBQ5). The plants were able to adapt and grew healthy in the three-support media with the exception of  Lavandula sp., which did not survive in any of the systems, showing that in the months when the light intensity was higher, a higher growth rate was reached to 9.5 % on average. In terms of the removal of N-NO3 (45- 60%), P-PO4 (20-23%) and COD5 (60-85%), no significant differences were found between any of the substrates. The above allows us to affirm that CWs, are suitable means for cultivation of ornamental plants and the development of them is favored with intensities of light in ranges from 720 to 856 µmol · m −2 · s −1, On the other hand, the substrates used proved to be efficient to remove contaminants, but at the same time to facilitate the healthy development of the used ornamental vegetation, with the exception of the lavender sp. Research is required to evaluate the effects of light intensity on the production of ornamental plants in controlled environments.

References

Paniagua-Pardo, G., Hernández-Aguilar, C., Rico-Martínez, F., Domínguez-Pacheco, F. A., Martínez-Ortiz, E., & Martínez-González, C. L. (2015). Effect of high intensity LED light on the germination and growth of broccoli seedlings (Brassica oleracea L.). Polibotánica, (40), 199-212.

Rodríguez, N., & Lazo, J. V. (2012). Efecto de la calidad de luz sobre el crecimiento del corocillo (Cyperus rotundus L.). Revista cientifica UDO agrícola, 12(1), 74-82.

Castro, G., & Cristina, M. (2019). Evaluación del efecto de la omisión de cinco nutrientes (N, P, K, Mg, S) en pasto miel (Setaria sphacelata) en Nanegalito-Pichincha (Bachelor's thesis, Quito: UCE).

Alvarado-Camarillo, D., Valdez-Aguilar, L. A., & Cadena-Zapata, M. (2018). CRECIMIENTO Y PROGRAMA DE FERTILIZACIÓN PARA LISIANTHUS EN BASE A LA ACUMULACIÓN NUTRIMENTAL. AGROProductividad, 11(8).

Sandoval, L., Marín-Muñiz, JL, Zamora-Castro, SA, Sandoval-Salas, F. y Alvarado-Lassman, A. (2019). Evaluación del tratamiento de aguas residuales por microcosmos de humedales subterráneos verticales en condiciones parcialmente saturadas plantadas con plantas ornamentales y rellenas con sustratos minerales y plásticos. Revista internacional de investigación ambiental y salud pública , 16 (2),167.

Wu, H., Zhang, J., Ngo, HH, Guo, W., Hu, Z., Liang, S., ... y Liu, H. (2015). Una revisión sobre la sostenibilidad de los humedales artificiales para el tratamiento de aguas residuales: diseño y operación. Tecnología de fuentes biológicas , 175 , 594-601.

Vymazal, J. (2011). Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia, 674(1), 133-156.

Li, W., Zhong, J., Yuan, G., Fu, H., Fan, H., Ni, L., ... & Cao, T. (2017). Stoichiometric characteristics of four submersed macrophytes in three plateau lakes with contrasting trophic statuses. Ecological Engineering, 99, 265-270.

Casierra-Martínez, H. A., Charris-Olmos, J. C., Caselles-Osorio, A., & Parody-Muñoz, A. E. (2017). Organic matter and nutrients removal in tropical constructed wetlands using Cyperus ligularis (Cyperaceae) and Echinocloa colona (Poaceae). Water, Air, & Soil Pollution, 228(9), 1-10.

Sánchez-Cardozo, J., & Díaz-Barrera, L. E. (2019). Evaluación de sustratos elaborados a partir de residuos celulósicos para la propagación de flores ornamentales y hortalizas. Bioagro, 31(1), 45-54.

Ramos, C. S. U., Fresneda, V. A. M., Maldonado, L. A. R., & Talero, M. A. P. (2019). Priorización de productos agroindustriales para la transformación productiva: un análisis desde el comercio. Crecer Empresarial: Journal of Management and Development., 1(01).

Hernández-Salazar, A. B., Moreno-Seceña, J. C., & Sandoval-Herazo, L. C. (2018). Tratamiento de aguas residuales industriales en México: Una aproximación a su situación actual y retos por atender. RINDERESU, 2(1-2), 75-87.

Avellán, T. y Gremillion, P. (2019). Humedales construidos para la recuperación de recursos en países en desarrollo. Revisiones de energías renovables y sostenibles , 99 , 42-57.

CONAGUA. Cuencas hidrográficas de México. Catálogo de Metadatos Geográficos. 2017.

Olguín, E. J., Sánchez-Galván, G., González-Portela, R. E., & López-Vela, M. (2008). Constructed wetland mesocosms for the treatment of diluted sugarcane molasses stillage from ethanol production using Pontederia sagittata. Water research, 42(14), 3659-3666.

Sandoval-Herazo, LC, Alvarado-Lassman, A., Marín-Muñiz, JL, Méndez-Contreras, JM y Zamora-Castro, SA (2018). Efectos del uso de plantas ornamentales y diferentes sustratos en la remoción de contaminantes de aguas residuales a través de microcosmos de humedales artificiales. Sostenibilidad , 10 (5), 1594.

Ríos-Montes, K. A., & Peñuela-Mesa, G. A. (2015). Chlorothalonil degradation by a microbial consortium isolated from constructed wetlands in laboratory trials. Actualidades Biológicas, 37(102), 255-265.

Kang, D. I., Jeong, H. K., Park, Y. G., & Jeong, B. R. (2019). Flowering and morphogenesis of kalanchoe in response to quality and intensity of night interruption light. Plants, 8(4), 90.

Maine, M. A., Sanchez, G. C., Hadad, H. R., Caffaratti, S. E., Pedro, M. D. C., Mufarrege, M. M., & Di Luca, G. A. (2019). Hybrid constructed wetlands for the treatment of wastewater from a fertilizer manufacturing plant: Microcosms and field scale experiments. Science of the Total Environment, 650, 297-302.

Zhang, D. Q., Tan, S. K., Gersberg, R. M., Zhu, J., Sadreddini, S., & Li, Y. (2012). Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. Journal of environmental management, 96(1), 1-6.

Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the total environment, 380(1-3), 48-65.

Zamora-Castro, S. A., Marín-Muñiz, J. L., Sandoval, L., Vidal-Álvarez, M., & Carrión-Delgado, J. M. (2019). Effect of ornamental plants, seasonality, and filter media material in fill-and-drain constructed wetlands treating rural community wastewater. Sustainability, 11(8), 2350.

Downloads

Published

2020-11-23

How to Cite

Sandoval-Herazo, L. C., Alvarado-Lassman, A. ., Nani, G. ., & Nakase-Rodríguez, C. (2020). Influence of light intensity on growth and flowering ornamental plants in constructed wetlands. Renewable Energy, Biomass & Sustainability, 2(2), 27–36. https://doi.org/10.56845/rebs.v2i2.25

Issue

Section

Original Articles