Supercapacitors for storing energy from coffee bean waste

PDF downloads: 140

Authors

  • Ebelia del Ángel-Meraz Universidad Juárez Autónoma de Tabasco (UJAT), División Académica de Ingeniería y Arquitectura (DAIA). Posgrado en Ciencias en Ingeniería (PCI); Cunduacán, Tabasco, México
  • Alex Pérez-Aguirre Universidad Juárez Autónoma de Tabasco (UJAT), División Académica de Ingeniería y Arquitectura (DAIA). Posgrado en Ciencias en Ingeniería (PCI); Cunduacán, Tabasco, México

DOI:

https://doi.org/10.56845/rebs.v2i2.23

Keywords:

doping, activated carbon, coffee beans, supercapacitors, specific capacitance

Abstract

Activated carbon (AC) was made from coffee bean waste, which was prepared by chemical activation, using potassium hydroxide (KOH) at 2 M as activating agent, with impregnation times of 24 and 48 h, temperatures carbonization of 600 and 700 ° C, once the activated carbon samples were obtained, they were doped with nickel oxide (NiO), in order to modify the electrical properties of CA, later they were characterized (physical adsorption of N2, FT-IR, XRD). The CA / NiO composites were prepared by the chemical method and electrodes were compacted into forms of self-consistent tablets, which were placed in a two-electrode cell using sulfuric acid (H2SO4) as electrolyte at 2 M. The electrochemical part was evaluated by means of Cyclic voltammetry and galvanostatic chronopotentiometry, obtaining the electrical behavior of the electrodes for their application in supercapacitors (SCS). Finally, the specific capacitance of the SCS was determined from CA / NiO, as a result it was obtained that the CA / NiO-48-700 ° C-KOH samples showed a maximum capacitance of: 405.405 F / g respectively. This proves that nickel oxide improved the properties of AC for use as electrodes in supercapacitors.

References

Abioye, A. M., & Ani, F. N. (2015). Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renewable and sustainable energy reviews, 52, 1282-1293.

Ahmed, T., Zhang, H. L., Xu, H. B., & Zhang, Y. (2017). m-BiVO4 hollow spheres coated on carbon fiber with superior reusability as photocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 531, 213-220.

Aldama Amado, I. (2015). Electrodos para supercondensadores obtenidos por electrodeposición. Universidad Autónoma de Madrid (UAM). Aldama, I., Barranco, V., Centeno, T. A., Ibañez, J., & Rojo, J. M. (2016). Composite electrodes made from carbon cloth as supercapacitor material and manganese and cobalt oxide as battery one. Journal of the Electrochemical Society, 163(5), A758.

Aldama, I., Barranco, V., Ibáñez, J., Amarilla, J. M., & Rojo, J. M. (2018). A procedure for evaluating the capacity associated with battery-type electrode and supercapacitor-type one in composite electrodes. Journal of The Electrochemical Society, 165(16), A4034.

Cao, W., & Yang, F. (2018). Supercapacitors from high fructose corn syrup-derived activated carbons. Materials today energy, 9, 406-415.

Cao, Y., Xiao, Y., Gong, Y., Wang, C., & Li, F. (2014). One-pot synthesis of MnOOH nanorods on graphene for asymmetric supercapacitors. Electrochimica Acta, 127, 200-207.

Chen, Y., Huang, Z., Zhang, H., Chen, Y., Cheng, Z., Zhong, Y., & Lei, X. (2014). Synthesis of the graphene/nickel oxide composite and its electrochemical performance for supercapacitors. International journal of hydrogen energy, 39(28), 16171-16178.

Chiu, Y. H., & Lin, L. Y. (2019). Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 101, 177-185.

Cuña, A., Tancredi, N., Bussi, J., Barranco, V., Centeno, T. A., Quevedo, A., & Rojo, J. M. (2014). Biocarbon monoliths as supercapacitor electrodes: influence of wood anisotropy on their electrical and electrochemical properties. Journal of The Electrochemical Society, 161(12), A1806.

Dai, C., Wan, J., Shao, J., & Ma, F. (2017). Hollow activated carbon with unique through-pore structure derived from reed straw for high-performance supercapacitors. Materials Letters, 193, 279-282.

Dhawale, D. S., Mane, G. P., Joseph, S., Talapaneni, S. N., Anand, C., Mano, A., & Vinu, A. (2015). Cobalt oxide functionalized nanoporous carbon electrodes and their excellent supercapacitive performance. RSC Advances, 5(18), 13930-13940.

Elizalde, P. (2013). Manual de experimentos de química orgánica II (1407). Universidad Nacional Autónoma de México. Facultad de química. Química de alimentos. Práctica 1, Identificación espectroscópica de compuestos orgánicos. Taller de espectroscopia de infrarrojo, 1-35.

García-Gómez, A., Miles, P., Centeno, T. A., & Rojo, J. M. (2010). Uniaxially oriented carbon monoliths as supercapacitor electrodes. Electrochimica acta, 55(28), 8539-8544.

González-Domínguez, J. M., Fernández-González, M. C., Alexandre-Franco, M., & Gómez-Serrano, V. (2018). How does phosphoric acid interact with cherry stones? A discussion on overlooked aspects of chemical activation. Wood Science and Technology, 52(6), 1645-1669.

Guo, J., Wu, D., Wang, T., & Ma, Y. (2019). P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor. Applied Surface Science, 475, 56-66.

Hall, D. S., Lockwood, D. J., Bock, C., & MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2174), 20140792.

Han, J., Ge, J., Ren, Z., Tu, J., Sun, Z., Chen, S., & Xie, G. (2017). Facile green synthesis of 3D porous glucose-based carbon aerogels for high-performance supercapacitors. Electrochimica Acta, 258, 951-958.

Han, L., Huang, H., Li, J., Zhang, X., Yang, Z., Xu, M., & Pan, L. (2020). A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition. Journal of Materials Chemistry A, 8(30), 15042-15050.

Hidayu, A. R., & Muda, N. (2016). Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Procedia Engineering, 148, 106-113.

Ho, M. Y., Khiew, P. S., Isa, D., Tan, T. K., Chiu, W. S., & Chia, C. H. (2014). A review of metal oxide composite electrode materials for electrochemical capacitors. Nano, 9(06), 1430002.

Hu, X., Wang, Y., Ding, B., & Wu, X. (2019). A novel way to synthesize nitrogen doped porous carbon materials with high rate performance and energy density for supercapacitors. Journal of Alloys and Compounds, 785, 110-116.

Huang, Y., Liu, Y., Zhao, G., & Chen, J. Y. (2017). Sustainable activated carbon fiber from sawdust by reactivation for high-performance supercapacitors. Journal of Materials Science, 52(1), 478-488.

Jayakumar, A., Antony, R. P., Zhao, J., & Lee, J. M. (2018). MOF-derived nickel and cobalt metal nanoparticles in a N-doped coral shaped carbon matrix of coconut leaf sheath origin for high performance supercapacitors and OER catalysis. Electrochimica Acta, 265, 336-347.

Lamine, S. M., Ridha, C., Mahfoud, H. M., Mouad, C., Lotfi, B., & Al-Dujaili, A. H. (2014). Chemical activation of an activated carbon prepared from coffee residue. Energy Procedia, 50, 393-400.

Lee, J. W., Ahn, T., Kim, J. H., Ko, J. M., & Kim, J. D. (2011). Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochimica Acta, 56(13), 4849-4857.

Lee, K. S., Park, M. S., & Kim, J. D. (2017). Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 323-329.

Li, Y., Fan, X., Zhang, M., Cui, L., & Jiao, T. (2019). Enhanced electrochemical performance of the activated carbon electrodes with a facile and in- situ phosphoric acid modification. Journal of Energy Storage, 24, 100744.

Liu, X., & Pickup, P. G. (2008). Ru oxide supercapacitors with high loadings and high power and energy densities. Journal of Power Sources, 176(1), 410-416.

Lu, Q., Lattanzi, M. W., Chen, Y., Kou, X., Li, W., Fan, X., & Xiao, J. Q. (2011). Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angewandte Chemie International Edition, 50(30), 6847-6850.

Marcinauskas, L., Kavaliauskas, Ž., & Valinčius, V. (2012). Carbon and nickel oxide/carbon composites as electrodes for supercapacitors. Journal of Materials Science & Technology, 28(10), 931-936.

Pico, F., Pecharroman, C., Ansón, A., Martínez, M. T., & Rojo, J. M. (2007). Understanding carbon–carbon composites as electrodes of supercapacitors: A study by AC and DC measurements. Journal of The Electrochemical Society, 154(6), A579.

Prías-Barragán, J. J., Echeverry-Montoya, N. A., & Ariza-Calderón, H. (2015). Fabricación y caracterización de carbón activado y de nanoplaquetas de carbón a partir de Guadua angustifolia Kunth para aplicaciones en electrónica. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(153), 444-449.

Qi, F., Xia, Z., Wei, W., Sun, H., Wang, S., & Sun, G. (2017). Nitrogen/sulfur co-doping assisted chemical activation for synthesis of hierarchical porous carbon as an efficient electrode material for supercapacitors. Electrochimica Acta, 246, 59-67.

Shang, Y., Zhang, J., Xu, L., Liu, H., Zhou, B., Tang, Y., & Jiang, X. (2018). Facile synthesis of a graphene/nickel-cobalt hydroxide ternary hydrogel for high-performance supercapacitors. Journal of colloid and interface science, 531, 593-601.

Thomas, P., Lai, C. W., & Johan, M. R. B. (2019). Recent developments in biomass-derived carbon as a potential sustainable material for super- capacitor-based energy storage and environmental applications. Journal of Analytical and Applied Pyrolysis, 140, 54-85.

Veneri, O., Capasso, C., & Patalano, S. (2018). Experimental investigation into the effectiveness of a super-capacitor based hybrid energy storage system for urban commercial vehicles. Applied Energy, 227, 312-323.

Wei, Q., Chen, Z., Cheng, Y., Wang, X., Yang, X., & Wang, Z. (2019). Preparation and electrochemical performance of orange peel based-activated carbons activated by different activators. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 574, 221-227.

Xie, Q., Bao, R., Xie, C., Zheng, A., Wu, S., Zhang, Y., & Zhao, P. (2016). Core-shell N-doped active carbon fiber@ graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. Journal of Power Sources, 317, 133-142.

Yang, B. S., Kang, K. Y., & Jeong, M. J. (2017). Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor. Journal of the Korean Physical Society, 71(8), 478-482.

Downloads

Published

2020-11-23

How to Cite

del Ángel-Meraz, E., & Pérez-Aguirre, A. (2020). Supercapacitors for storing energy from coffee bean waste. Renewable Energy, Biomass & Sustainability, 2(2), 7–15. https://doi.org/10.56845/rebs.v2i2.23

Issue

Section

Original Articles