Environmental impact assessment in microalgal lipid production: carbon footprint and net emissions

DOI:
https://doi.org/10.56845/rebs.v6i2.182Keywords:
microalgae, lipids, carbon footprint, CO2 emissionsAbstract
This study focuses on analyzing the role of microalgae in mitigating climate change through CO2 capture and lipid production, which can be used in the development of energy products and commercially relevant products. The objective was to evaluate the net CO2 emissions in three lipid production scenarios from microalgae, in addition to analyzing the impact of various biomass pretreatment technologies before lipid extraction. For this purpose, only the emissions directly generated by energy consumption in the process and the amount of CO2 that can be captured by microalgae cultivation were considered. In all three scenarios, CO2 capture during biomass cultivation and emissions associated with maintaining the process in operation were evaluated. The results show that the emissions generated by energy consumption were 3.56 kg-CO2/kg-oil, 2.19 kg-CO2/kg-oil, and 2.36 kg-CO2/kg-oil in scenarios 1, 2, and 3, respectively, while the CO2 emissions captured in microalgae cultivation were three to four times higher, ultimately resulting in negative emissions in all scenarios. The efficiency of CO2 capture per kilogram of oil produced varies between scenarios, suggesting that the choice of technology and process conditions significantly influence the overall environmental impact. This analysis identifies areas of opportunity to improve microalgal biomass utilization processes, highlighting the stages of the process with the greatest impact on the carbon footprint and enabling the comparison of different technologies on the same basis.
References
Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15(1), 584–593. https://doi.org/10.1016/j.rser.2010.09.018.
Alcock, T. D., Salt, D. E., Wilson, P., & Ramsden, S. J. (2022). More sustainable vegetable oil: Balancing productivity with carbon storage opportunities. Science of the Total Environment, 829, 154539. https://doi.org/10.1016/j.scitotenv.2022.154539.
Alishah Aratboni, H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., & Morones-Ramírez, J. R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18(1), 178. https://doi.org/10.1186/s12934-019-1228-4.
Baral, S. S., Singh, K., & Sharma, P. (2015). The potential of sustainable algal biofuel production using CO2 from thermal power plant in India. Renewable and Sustainable Energy Reviews, 49, 1061–1074. https://doi.org/10.1016/j.rser.2015.04.181.
Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. https://doi.org/10.1016/j.rser.2009.10.009.
Cheah, W. Y., Show, P. L., Chang, J.-S., Ling, T. C., & Juan, J. C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184, 190–201. https://doi.org/10.1016/j.biortech.2014.11.026.
Core, & Weiting Team, R. K. P. and L. A. M. (eds. . (2014). Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel o Climate Change. IPCC, Geneva, Switzerland.
Daniela Sandoval Gavira, F. G.-F. (2021). Cálculo de las huellas de carbono y ecológica del destino turístico de Puerto Nariño (Amazonas). Turismo y Sociedad, 29, 79–94. https://doi.org/10.18601/01207555.n29.04.
El-Halwagi, M. M. (2012). Chapter 1 - Introduction to Sustainability, Sustainable Design, and Process Integration. In Sustainable Design Through Process Integration (pp. 1–14). Oxford: Butterworth-Heinemann. https://doi.org/10.1016/B978-1-85617-744-3.00001-1.
Garza-Galicia, A., Valenzuela-Patlán, I. de los Ángeles, & Sulbarán-Rangel, B. (2021). Huella de carbono de equipos térmicos convencionales bajo la perspectiva de la ingeniería de procesos. Ciencia Latina Revista Multidisciplinar, 5(4), 6474–6484. Retrieved from https://doi.org/10.37811/cl_rcm.v5i4.779.
Guallasamin-Constante, K., & Simón-Baile, D. (2018). Huella de carbono del cultivo de rosas en Ecuador comparando dos metodologías: GHG Protocol vs. PAS 2050/ Carbon footprint of the cultivation of roses in Ecuador comparing two methodologies: GHG Protocol vs. PAS 2050. Letras Verdes. Revista Latinoamericana de Estudios Socioambientales, 24, 27–56. https://doi.org/10.17141/letrasverdes.24.2018.3091.
Huang, G., Chen, F., Wei, D., Zhang, X., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38–46. https://doi.org/10.1016/j.apenergy.2009.06.016.
INECC, I. N. de E. y C. C. (2014). Factores de emision para los diferentes tipos de combustibles fosiles que se consumen en México. Istituto Nacional de Ecología y Cambio Climático, 52(5000), 1–62.
IPCC. (2014). Cambio climático 2014; Informe de Síntesis; http://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM_es.pdf.
Julio, R., Albet, J., Vialle, C., Vaca-Garcia, C., & Sablayrolles, C. (2017). Sustainable design of biorefinery processes: existing practices and new methodology. Biofuels, Bioproducts and Biorefining, 11(2), 373–395. https://doi.org/10.1002/bbb.1749.
Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101. https://doi.org/10.1016/j.biombioe.2012.06.034.
Loayza Pérez, J., & Silva Meza, V. (2013). Los procesos industriales sostenibles y su contribución en la prevención de problemas ambientales. Industrial Data, 16(1), 108–117. Retrieved from http://www.redalyc.org/articulo.oa?id=81629469013.
Ma. del Carmen Clemente Jul, J. R. N. (2009). Comparación de las tecnologías de captura y almacenamiento de CO2 en la generación de energía. Anales de La Real Academia de Doctores de España, 13(2), 19–29. Retrieved from https://oa.upm.es/5097/2/INVE_MEM_2009_65690.pdf.
Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., & Luque, R. (2018). A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. Journal of Cleaner Production, 181, 42–59. https://doi.org/10.1016/j.jclepro.2018.01.125.
Valdovinos-García, E. M., Barajas-Fernández, J., Olán-Acosta, M. D., Petriz-Prieto, M. A., Guzmán-López, A., & Bravo-Sánchez, M. G. (2020). Techno-Economic Study of CO2 Capture of a Thermoelectric Plant Using Microalgae (Chlorella vulgaris) for Production of Feedstock for Bioenergy. Energies, 13(2). https://doi.org/10.3390/en13020413.
Valdovinos-García, E. M., Bravo-Sánchez, M. G., Olán-Acosta, M. D., Barajas-Fernández, J., Guzmán-López, A., & Petriz-Prieto, M. A. (2022). Technoeconomic Evaluation of Microalgae Oil Production: Effect of Cell Disruption Method. In Fermentation, 8(7). https://doi.org/10.3390/fermentation8070301.
Vandamme, D., Foubert, I., & Muylaert, K. (2013). Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 31(4), 233–239. https://doi.org/10.1016/j.tibtech.2012.12.005.
WRI & WBCSD. (2019). Protocolo de Gases Efecto Invernadero. Journal of Chemical Information and Modeling, 53(9), 138. Retrieved from https://ghgprotocol.org/sites/default/files/standards/protocolo_spanish.pdf.
Zhou, J., Wang, M., Saraiva, J. A., Martins, A. P., Pinto, C. A., Prieto, M. A., Simal-Gandara, J., Cao, H., Xiao, J., & Barba, F. J. (2022). Extraction of lipids from microalgae using classical and innovative approaches. Food Chemistry, 384, 132236. https://doi.org/10.1016/j.foodchem.2022.132236.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Saira Pérez-de la Cruz , Beatriz A. Ascencio-Priego, Moisés A. Petriz-Prieto, Esveidi Montserrat Valdovinos García

This work is licensed under a Creative Commons Attribution 4.0 International License.