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Abstract: In this paper, a nonlinear observer design is presented for simultaneous parameter estimation and state variables estimation. The case 
of study is microalgae cultures for biodiesel generation, where reaction rates, biomass concentration, intracellular quota and nitrogen 
concentration are critical variables that provide information about the state of the process. However, these variables might be difficult to measure 
due to the lack of specific instruments, high sensor costs or infeasibility of installation in the process. Therefore, two observer-based virtual 
sensors are presented in this paper as an analytical alternative to perform estimation of the main important variables or parameters of the 
process: a nonlinear adaptive observer and a nonlinear high-gain observer. The observers are based on the Droop´s mathematical model that 
describes the ability of microalgae to store nutrients and the decoupling between substrate uptake and biomass growth. Numerical simulations 
are made in order to evaluate the performance of the proposed observers. 
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Nomenclature 
 
X          Biomass concentration, mg L-1 
S          Nitrogen concentration, mgN L-1 
Q         Intracellular quota, gN gD.W-1 
µm       Maximum growth rate, d-1 
ρm       Maximum inorganic nitrogen uptake rate of limiting substrate, gN gD.W-1 d-1 
ks        Half saturation constant of substrate, mg L-1 
Q0       Minimum cell quota, mgN mgD.W-1 
Sin       Inlet substrate, mgN L-1 
D         Dilution rate, d-1  

Introduction 
 
The hard reliance on fossil fuels to cover energy demand has become increasingly important. However, fossil fuels are 
not renewable, their combustion causes emission of large amounts of carbon dioxide (CO2), which is one of the 
greenhouse gases responsible for climate change and, in addition, they could be depleted within a few decades 
(Leonard et al., 2020; Barreto, 2018; Amalina et al., 2018). In fact, fuel oil reserves are expected to be scarce by 2050, 
so that as production decreases costs will increase (Shih et al., 2013). 
 
Therefore, there is an urgent need to find sustainable, renewable, readily available and affordable alternative energy 
sources (Deshmukh et al., 2019). Biodiesel is a promising option to fuel derived from fossils, because it has a high flash 
point, it is biodegradable, ecological and it emits low concentrations of polluting gases during its combustion (Ching et 
al., 2015; Rincón et al., 2014). 
 
Microalgae is one of the raw materials that has received attention by the scientific community for the biodiesel 
production and that could potentially resolve the current energetic. Microalgae are photosynthetic organisms that use 
a source of light, carbon dioxide, water and some nutrients to generate biomass (Uganeeswary et al., 2019; Chun et al., 
2011). The oil content in microalgae biomass is around 20-50% by weight of dry mass (Spolaore et al., 2006).  They also 
have the quality of overcoming various limitations, since they are cultivated in infertile lands or lands using water from 
low quality. Algae production does not cause food problems because the cultivation process does not necessarily 
require fresh water for cultivation. Algae-based biofuels could satisfy a great amount of the global demand for 
transportation fuels (Mohammadmatin et al., 2018; Demirbas, 2010; Chisti, 2007). 
 
Unlike terrestrial crops, microalgae grow 10-15 times faster (Chun et al., 2011) and biodiesel production is expected to 
be 15-300 times higher (Amalina et al., 2018). They commonly double their mass in 24 hours (Chisti, 2007) and their 
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harvest cycle is very short (around 12 days, depending on the species). This allows to obtain biomass during the year. 
It is possible to obtain oil production from 19000 to 57000 liters per hectare in a year, that is a higher volume of lipids 
than any other raw material for biodiesel (Demirbas et al., 2011). 
 
In this context, continuous performance monitoring of the process in order to prevent interruptions and stoppages of 
the plant, is of utmost importance. Unfortunately, most of supervision attempts are hampered by the lack of 
appropriate devices, high instrumentation costs and unfeasibility of installing sensors inside the system (Benavides et 
al., 2015; Mohd et al., 2015; de Battista et al., 2011; Jenzsch et al., 2006). An alternative to mitigate this difficulty is to 
design and implement robust and reliable analytical methods (by combining the information available through process 
models and available measurements) to perform on-line estimation of process variables and parameters (Benavides et 
al., 2015 and Dochain, 2003).  
 
The estimation of variables and parameters in bioprocess is a challenging task given its complex and nonlinear dynamic 
behavior, the lack of reliable sensors, unmodeled dynamics, unpredictable parameters variations among other factors 
(Dochain, 2003; de Battista et al., 2011). In this regard, kinetic parameters are directly correlated with process 
performance but they are not measurable with commercially available sensors. 
 
For this reason, it is of great importance to implement robust methods to determine the specific characteristics in a 
short period of time and to select industrially relevant microorganisms (Dietzsch et al., 2011; Jenzsch et al., 2006). 
 
The main contribution of this work is the implementation of state observers as virtual sensors in biotechnological 
applications such as microalgae cultures for online monitoring of reaction rates and nutrient concentration based on 
the knowledge of available measurements. This development is an extension of the work published in Vélez et al., 
(2019). The main difference consists in the use of a variable dilution rate for the simultaneous estimation of two 
parameters that change during the process: the maximum growth rate and the maximum absorption rate of nitrogen. 
In addition, the nutrient concentrations (which is difficult to measure online) and the intracellular quota (which cannot 
be controlled online) (Coutinho et al., 2019) are estimated for monitoring purposes. 

Materials and Methods 
 
Mathematical model 
 
Droop model (Droop, 1983) is one of the most accepted and used models for design, analysis, operation and control of 
complex processes such as microalgae cultures. This model expresses the mass balance in a continuous 
photobioreactor. The model describes the dynamics of three state variables: biomass concentration (X), substrate 
concentration (S) and intracellular quota (Q). The extracellular nitrogen is considered as a limiting substrate. It is of 
particular interest when microalgae biomass is required for the biodiesel production. The accumulation of lipids within 
microalgae is triggered by subjecting them to stress due to nitrogen depletion in the culture media (Solimeno et al., 
2017; Yuan et al., 2014; Yoo et al., 2014; Bougaran et al., 2010). 
 
The Droop model for microalgae cultures is given in the following equations: 
 

𝑋̇ = 𝜇! %1 −
𝑄"
𝑄 )𝑋 − 𝐷𝑋 (1) 

  

𝑆̇ = −𝜌! %
𝑆

𝑆 + 𝑘#
)𝑋 − 𝐷𝑆 + 𝐷𝑆$% (2) 

  

𝑄̇ = 𝜌! %
𝑆

𝑆 + 𝑘#
) − 𝜇! %1 −

𝑄"
𝑄 )𝑄 (3) 

 
The dilution rate D is the quotient between the inflow and volume of the culture, 𝑘# is a half saturation constant of 
substrate, 𝜌! is the maximum uptake rate, 𝑄" is the minimum intracellular quota at which microalgae no longer grow 
and 𝜇! is the maximum growth rate. 
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Assumption 1. The volume and illumination are constant, temperature is uniformly distributed within the 
photobioreactor, pH is maintained at 7.3, culture media is perfectly mixed and nitrogen is limited. 
 
The system given in Eqs. (1)-(3) can be rewritten as: 
 

x&̇ = θ& %1 −
Q"
Q ) x& − ux& (4) 

  

x'̇ = −θ' %
x'

x' + k(
) x& − ux' + uS)* (5) 

  

x+̇ = θ' %
x'

x' + k(
) − θ& %1 −

Q"
x+
) x+ (6) 

 
where 𝑥& = 𝑋, 𝑥' = 𝑆, 𝑥+ = 𝑄, 𝑢 ∈ 𝑅 is the control input of the system, 𝜃& = 𝜇! and 𝜃' = 𝜌! are unknown parameters 
(the maximum growth rate and the maximum nitrogen rate, respectively). 
 
Table 1 shows the parameters description, as well as their values, presented in Benavides et al., (2015) for microalga 
Dunaliella tertiolecta. 

Table 1. Parameters description and their values 

Parameter Value Definition 
θ1 1.8102 d-1 Maximum growth rate 

θ2 0.0916 gN gD. W.-1 d-1 
Maximum absorption rate of 

nitrogen 

ks 1.7499 mgN L-1 
Half saturation constant of 

substrate 
Q0 0.0369 mgN mgD.W.-1 Minimum intracellular quota 
Sin 15 mgN L-1 Inlet substrate 

 
Adaptive observer 
 
In general, a state observer is a dynamic system that provides an asymptotic estimate of the real state of a system, 
based on knowledge of the measured inputs and outputs of a process. An adaptive observer is a recursive algorithm 
for simultaneous estimation of the state of the system and unknown parameters. The adaptive observer used in this 
work was firstly developed by (Besanςon, 2000) and it has been successfully used in various practical applications 
(Astorga et al., 2007; Ortiz et al., 2013). 
 
Consider the following nonlinear system, written in the adaptive form presented in Besanςon, (2000): 
 

𝑦̇ = 𝛼(𝑦, 𝜁, 𝑢, 𝑡) + 𝛽(𝑦, 𝜁, 𝑢, 𝑡)𝜃 (7) 
  

𝜁̇ = 𝑍(𝑦, 𝜁, 𝑢, 𝑡) (8) 
 
where 𝑦	 ∈ 	𝑅𝒑 is the output vector of the system (measured variables), 𝜁	 ∈ 	 𝑅𝒓 is the vector of unmeasured variables, 
𝑢	 ∈ 	𝑅𝒎 is the input vector and 𝜃	 ∈ 	 𝑅𝒒 is the vector of unknown parameters. Functions 𝛼 and 𝛽 are Lipschitz on the 
domain of the state variables and the input. 
 
An adaptive observer for the system given in Eqs. (7)-(8): 
 

yḞ = αHy, ζJ, u, tL + βHy, ζJ, u, tLθN − k0(yF − y) (9) 
  

𝜁J̇ = Z(y, ζJ, u, t) (10) 



 

 
20 

Renewable Energy, Biomass & Sustainability (REB&S), Vol. 1, No. 1, 17-27 

  
θṄ = −k1β2(y, ζJ, u, t)(yF − y) (11) 

 
The symbol “^” represents the estimated values. The superscript ”T” denotes the transpose of a matrix.	𝑘3 > 0, and 𝑘4 >
0 are the observer gains. 
 
In order to demonstrate that the estimation errors ‖𝑦F(𝑡) − 𝑦(𝑡)‖	and ‖𝜁J(𝑡) − 𝜁(𝑡)‖ asymptotically tend to zero when t 
tends to infinity, while‖𝜃N(𝑡) − 𝜃‖  remains bounded, the following dynamics of the estimation errors are considered: 
 

ė0 = yḞ − ẏ (12) 
  

ėζ = ζ(̇ − ζ̇ (13) 
  

ėθ = θ)̇ − θ̇ (14) 
 
By considering the following Lyapunov’s candidate function 
 

V7Ht, e0, e8, e1L − U
ε
2X e0

2e0 + VHt, e8L + (ε/2kθ)e12e1 > 0 (15) 

 
it can be easily demonstrated that its derivative is given by 
 

Vė ≤ −εky‖ey‖2 + ε *γα + γβ+ ‖ey‖,κ-eζ. − κ-eζ. > 0 (16) 

 
If 𝑘3 > 0 and 𝑘4 > 0 then,  𝑉𝑒̇ is negative definite and thereby it ensures the convergence of the observer. 
 
Evaluation of the adaptive observer 
 

• Simultaneous estimation of the maximum growth rate θ1 and the maximum absorption rate θ2 
frommeasurements of biomass concentration, nitrogen concentration and intracellular quota. 

 
In order to design the nonlinear adaptive observer, the system given in Eqs. (4)-(6) can be rewritten in the form of Eqs. 
(7)-(8) as follows: 

^
𝑦&̇
𝑦'̇
𝑦+̇
_

`
3̇

= a
−𝑢𝑦&

𝑢𝑦' + 𝑢𝑆$%
0

b
cdddedddf

@(3,C,D,E)

+

⎣
⎢
⎢
⎢
⎡ 𝑦& %1 −

𝑄"
𝑦+
)

0

−𝑦+ %1 −
𝑄"
𝑦+
)
⎦
⎥
⎥
⎥
⎤

cddddeddddf
G!(3,C,D,E)

𝜃& +

⎣
⎢
⎢
⎢
⎡

0
−𝑦& %

𝑦'
𝑦' + 𝑘#

)

%
𝑦'

𝑦' + 𝑘#
) ⎦

⎥
⎥
⎥
⎤

cddddeddddf
G"(3,C,D,E)

𝜃' 
(17) 

 
Based on Eqs. (9)-(11), the adaptive observer design can be expressed as is given in Eqs. (18)-(20). It can be seen that   
simultaneous estimation of the maximum growth rate (𝜃&) and the maximum absorption rate (𝜃') can be performed. 
These parameters are time-varying throughout the process, given that biological systems are naturally uncertain and 
they change over time depending on external conditions (Countinho et al., 2019). In this case, it is considered that all 
states are measurable, therefore no unmeasurable states 𝜁 exist. We are only interested to obtain the online 
estimations of parameters 𝜃& and 𝜃'. 
 

y/̇ = α(y, u, t) + β1(y, u, t)θ)1 + β2(y, u, t)θ)2 − ky(y/ − y) (18) 
  

θṄ& = −k1&β&2(y, ζJ, u, t)(yF − y) (19) 
  

θṄ' = −k1'β'2(y, ζJ, u, t)(yF − y) (20) 
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• Intracellular quota estimation from biomass and nitrogen concentrations measurements 
 

In this case, we are interested to estimate the unknown state variables due to its complex measurement in microalgae 
cultures. To design the observer, the system given in Eqs. (4)-(6), is rewritten in the form of Eqs. (7) and (8), as is shown 
in Eqs. (21) and (22). All parameters (𝜃) are considered to be known. The biomass and nitrogen concentrations are 
measured with physical sensors. 
 

m𝑦&̇𝑦'̇
ǹ

3̇

= o
−𝑢𝑦&

𝑢𝑦' + 𝑆$%pcddeddf
@(3,C,D,E)

+ ^𝑦& %1 −
𝑄"
𝜁 )

0
_

cdddedddf
G!(3,C,D,E)

𝜃& + ^
0

−𝑦& %
𝑦'

𝑦' + 𝑘#
)_

cddddeddddf
G"(3,C,D,E)

𝜃' (21) 

  

𝜁̇ = −𝜁 %1 −
𝑄"
𝜁 ) 𝜃& + %

𝑦'
𝑦' + 𝑘#

) 𝜃'cdddddddddedddddddddf
I(3,C,D,E)

 (22) 

 
Based on Equations (9)-(11), the adaptive observer design is as given in Eqs. (23)-(25): 
 

yḞ& = αHy, ζJ, u, tL + β&Hy, ζJ, u, tLθ& − k0(yF& − y&) (23) 
  

	yḞ' = αHy, ζJ, u, tL + β'Hy, ζJ, u, tLθ' 	− k0(yF' − y') (24) 
  

ζJ̇ = ZHy, ζJ, u, tL (25) 

High-gain observer 
 
A high-gain observer for nonlinear systems was proposed by Gauthier et al., (1992) and, since then, it has been 
successfully applied for estimation of various  nonmeasurable or difficult to measure variables, for instance, in ethanol-
water distillation columns (Téllez et al., 2009), heat exchangers (Astorga et al., 2008), steam generators of thermal 
power plants (Astorga et al., 2018), among others. 
 
Consider the following nonlinear control affine system 
 

ẋ = fHx(t)L + gHx(t)Lu(t) (26) 
  

y(t) = h(x(t)) (27) 
 
where 𝑥(𝑡) ∈ 𝑅	% is the state vector, 𝑢(𝑡) ∈ 𝑅 is input of the system, ℎH𝑥(𝑡)L ∈ 	𝑅 is output function, 𝑓H𝑥(𝑡)L ∈ 	𝑅% and 
𝑔H𝑥(𝑡)L ∈ 	𝑅% are smooth nonlinear functions. 
 
Assuming that the system given by Eqs. (26) and (27) is observable and by considering a transformation of coordinates 
𝑧(𝑡) = 𝛷H𝑥(𝑡)L = [ℎ(𝑥)			𝐿Jℎ(𝑥)…𝐿J%K&ℎ(𝑥)]L, where 𝐿J$ ℎ(𝑥) is the i-th successive Lie derivate of ℎ(𝑥)	along 𝑓(𝑥), then 
the system becomes 
 

ż(t) = A�z(t) + ΨHz(t)L + ϕHz(t)Lu(t) (28) 
  

y(t) = C�z(t) (29) 
  

where 𝑧(𝑡) ∈ 	𝑅%, 𝐴� = �

0	1	0	0
⋮ 	…0	0
0	 ⋱ 0	1
0	…0	0

�, ΨH𝑧(𝑡)L = �

0
⋮
0

Ψ%(𝑧(𝑡))
�, ϕH𝑧(𝑡)L =

⎣
⎢
⎢
⎢
⎡ ϕ&H𝑧(𝑡)L
ϕ'H𝑧&(𝑡), 𝑧'(𝑡)L

⋮
𝜙%(𝑧&(𝑡), … , 𝑧%(𝑡))⎦

⎥
⎥
⎥
⎤
 and 𝐶� = [1		0		 … 		0] 

 
An observer for the system given by Eqs. (28) and (29) is given by Gauthier et al., (1992) 
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zḞ(t) = A�zF(t) + ΨHzF(t)L + ϕHzF(t)Lu(t) + S1K&C�2(C�z(t) − C�zF(t)) (30) 
 
where 𝑆4 is a positive definite symmetric matrix calculated from the Lyapunov equation. 
 

θS1 + A2S1 + S1A = C�2C� (31) 
 
where 𝜃 > 0 is the observer calibration parameter. 
 
By considering a third order system (which is the case of the system representing the microalgae cultures, the Droop 
model), the matrix 𝑆4 is expressed as follows 
 

	𝑆4 =

⎣
⎢
⎢
⎢
⎢
⎡

−

1
𝜃 −

1
𝜃'

1
𝜃+

1
𝜃'

2
𝜃+ −

3
𝜃M

1
𝜃+ −

3
𝜃M

6
𝜃N ⎦

⎥
⎥
⎥
⎥
⎤

 (32) 

 
In the original coordinates 𝑥(𝑡) = 𝜙K&(𝑧(𝑡)), the observer given in Eq. (30) becomes 
 

𝑥Ḟ(𝑡) = 𝑓H𝑥F(𝑡)L + 𝑔H𝑥F(𝑡)L𝑢(𝑡) + a
𝜕𝜙H𝑥F(𝑡)L

𝜕𝑥F b
K&

𝑆4K&𝐶�LH𝑦(𝑡) − 𝑦F(𝑡)L (33) 

  
	yF = h(xF(t)) (34) 

 
where 𝐽H𝑥F(𝑡)L = OP(QR(E))

OQR
 is the nxn Jacobian matrix of 𝜙H𝒙�(𝒕)L = 𝝓(𝒙(𝒕))|𝒙(𝒕)U𝒙V(𝒕). 

 
A condition for the existence of an observer for the system given by Eqs. (26) and (27) is that 𝑟𝑎𝑛𝑘(𝐽H𝑥(𝑡)L) = 𝑛. 

Performance evaluation of the high-gain observer 
 
In order to design the high-gain observer, the system given by Eqs. (4)-(6) is rewritten as is shown in Eqs. (26)-(27). It 
can be seen that the biomass concentration (𝑥&) is the available measurement. 
 

𝑥̇ =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜇!𝑥& −

𝜇!𝑄"𝑥&
𝑥+

−
𝜌!𝑥&𝑥'
𝑥' + 𝑘#

𝜌!𝑥'
𝑥' + 𝑘#

− 𝜇!𝑥+ + 𝜇!𝑄"⎦
⎥
⎥
⎥
⎥
⎤

cdddddddedddddddf
J(Q(E))

+ a
−𝑥&

−𝑥' + 𝑆$%
0

b
cddeddf

W(Q(E))

𝑢(𝑡) (35) 

  
𝑦(𝑡) = 𝑥& (36) 

 
It can be verified that for the system given by Eqs. (35) and (36), 𝑟𝑎𝑛𝑘(𝐽H𝑥(𝑡)L) = 3, therefore, the system is observable. 
Then the proposed high-gain observer is: 
 

𝑥Ḟ(𝑡) = 𝑓H𝑥F(𝑡)L + 𝑔H𝑥F(𝑡)L𝑢(𝑡) + a
𝜕𝜙H𝑥F(𝑡)L

𝜕𝑥F b
K&

𝑆4K&𝐶�LH𝑥&(𝑡) − 𝑥&�(𝑡)L (37) 

  
𝑦F = 𝑥&� (38) 

  

where  𝑆4K& = ^
3𝜃 3𝜃' 𝜃+
3𝜃' 5𝜃+ 2𝜃M
𝜃+ 2𝜃M 𝜃+

_  
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Results and Discussion 
 
Two scenarios are presented for the supervision of microalgae cultures through the online monitoring of parameters 
and characteristic variables of the process as explained below. 
 
Scenario 1. Adaptive observer 
 

• Simultaneous estimation of the maximum growth rate and the maximum absorption rate are performed based 
on the measurements of the biomass and nitrogen concentration and the intracellular quota.  

 
The simulations were carried out in Matlab R2018 using the Euler integration method to solve the differential 
equations, with an integration time of 0.001s. The initial conditions of the adaptive observer were same as those of the 
system, that is 𝑦12 (0) = 140	𝑚𝑔𝐷.𝑊. 𝐿−1, 𝑦22 (0) = 16.5	𝑚𝑔𝑁	𝐿−1and 𝑦32 (0) = 0.045	𝑔𝑁	𝑔𝐷.𝑊−1.	  This is an acceptable 
consideration due to the assumption that all states are measurable. The initial condition of the parameters to be 
estimated were zero, that is 𝜃13 (0) = 0	𝑑−1 and 𝜃23 (0) = 0	𝑔𝑁	𝑔𝐷.𝑊.−1 𝑑−1 by taking into account that they are 
completely unknown. 
 
Likewise, the tuning gains for the observer 𝑘3 = 120, 𝑘4& = 2 and 𝑘4' = 0.1 were chosen such that error converges 
asymptotically to zero. On the other hand, it was considered that the maximum growth rate varies throughout the 
process from 1.8102 to 1.6, and from 1.3 to 2.2 d-1 and in the same way, the maximum absorption rate varies from 
0.0916 to 0.01, and from 0.3 to 0.05 gN gD.W-1d-1, as is shown in Fig. 2. 
 
In Fig. 1 the input signal of the system is shown. Three impulses lasting one day were applied, one on day 2 with u=0.9 
d-1, another on day 4 with u=0.5 d-1 and the last one on day 6 with u=0.7 d-1, in order to validate the performance of 
the observers in continuous cultures. 
 
Figs. 2a and 2b present the estimates of the two kinetic parameters. This is achieved by using biomass concentration, 
nitrogen concentration and intracellular quota as available measurements. Given that two parameters are included in 
three equations of the Droop model, it is not possible to estimate any of these state variables, because the parameters 
must not be present in the vector of unmeasured variables according to Eq. (10) proposed in Besançon (2000). In Fig. 
2a it is clearly observed that the observer estimates adequately the maximum growth rate. However, as soon as a 
change in the value of the parameter is detected, the estimated value (dotted line) tries to follow the true value (solid 
line) without achieving asymptotic convergence during the variation, once the value remains constant for a period of 
considerable time estimation error tends to zero. 
 

 
Fig. 1. System input. 



 

 
24 

Renewable Energy, Biomass & Sustainability (REB&S), Vol. 1, No. 1, 17-27 

  
(a) (b) 

Fig. 2. True and estimated values of the parameters: (a) maximum growth rate, and (b) maximum uptake rate. 

In Fig. 2b it can be seen that the estimated value (dotted line) of the maximum uptake rate before detecting the first 
change begins to diverge from the true values (solid line), until it remains constant for two days, it achieves 
convergence, but detecting a larger change presents more noticeable discrepancy without recovering even when 
occurs  a decrease in value. 
 

• Estimation of intracellular quota from biomass and nitrogen concentrations measurements 
 
Simulations were carried out in Matlab R2018a by using the Euler integration method to solve the differential 
equations, with an integration time of 0.001s. The constant parameters mentioned in Table 1 were used. The profile of 
the input signal is given in Fig. 1. Initial conditions for the observer were 𝑦12 (0) = 140	𝑚𝑔𝐷.𝑊. 𝐿−1, 𝑦22 (0) =
16.5	𝑚𝑔𝑁	𝐿−1 due to the assumption that they are measurable with physical sensors. It was considered that 𝜁((0) =
0.025	𝑔𝑁	𝑔𝐷.𝑊−1 since it is an unknown variable. Likewise, gain 𝑘3 = 100 was chosen, according to the stability 
conditions imposed by the Lyapunov stability method. Therefore, the estimation error converges to zero. Figs. 3 and 4 
show the biomass and nitrogen concentrations respectively. It can be seen that the estimated values (dotted line) 
quickly converge from the beginning of the process to the true values (solid line) inasmuch as we consider that 
measurements are obtained with physical sensors. In Fig. 5 it can be seen that the intracellular quota estimation is 
adequately achieved with the adaptive observer and it reaches its true value before the middle of the process. 

 

  
Fig. 3. True and estimated values of biomass 

concentration. 
Fig. 4. True and estimated values of nitrogen 

concentration. 
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Fig. 5. True and estimated values of intracellular quota. 

 
Scenario 2. Estimation of nitrogen concentration and intracellular quota from the available measurement of biomass 
concentration by means of a high-gain observer 
 
Simulations were carried out in Matlab R2018 by using the Euler integration method to solve the differential equations, 
with an integration time of 0.001 s. Initial conditions for the system were 𝑥&(0) = 140	𝑚𝑔𝐷.𝑊. 𝐿K&, 𝑥'(0) =
16.5	𝑚𝑔𝑁	𝐿K& and 𝑥+(0) = 0.045	𝑔𝑁	𝑔𝐷.𝑊K& and the initial conditions of the observer were 𝑥12 (0) = 145𝑚𝑔𝐷.𝑊. 𝐿−1, 
𝑥22 (0) = 20	𝑚𝑔𝑁	𝐿−1 and 𝑥32 (0) = 0.025	𝑔𝑁	𝑔𝐷.𝑊−1. The same input illustrated in Fig. 1 was used. The calibration 
parameter was 𝜃 = 2. 
 
Fig. 6 shows the estimated value (dotted line) of the biomass concentration compared to its true value (solid line). It 
can be that the estimation converges asymptotically as expected, in as much as they are the measured variables of the 
process. 
 
In Fig. 7 it is observed that the estimation of the nitrogen concentration quickly converges to the true value. In Fig. 8 it 
can be appreciated the estimated value of the intracellular quota which requires less time to reach the true value 
compared with the estimated value obtained with the adaptive observer. This demonstrates the effectiveness of the 
high-gain approach to predict this variable, which in practice, it is difficult to measure with physical sensors. 
 

  
Fig. 6. True and estimated values of biomass 

concentration. 
Fig. 7. True and estimated values of nitrogen 

concentration. 
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Fig. 8. True and estimated values of intracellular quota. 

Conclusions 
 
The nonlinear adaptive observer proposed for estimation of the intracellular quota and simultaneous estimation of the 
maximum growth rate and the maximum uptake rate turned out to be efficient and easy to implement. The observer 
gains guarantee the convergence of the estimation values towards the true values. These gains are explicitly proposed 
as positive values without the need to solve any other dynamic system. The online estimation of the state variables or 
the process parameters offers the opportunity to optimize the control and productivity of the bioprocess. Also, it allows 
to provide timely diagnosis in case of problems during the cultivation stage. The estimation of the maximum growth 
rate is achieved despite the fact that it undergoes significant changes. In contrast, estimation of the maximum 
absorption rate is not possible when there are very large changes in its values, however for small changes or constant 
values, the estimated value converges asymptotically to the true value. 
 
On the other hand, by using high-gain observers it is possible to know the values of the nitrogen concentration and the 
intracellular quota based on available measurements of biomass concentration. This observer converges faster than 
the adaptive observer when intracellular quota is estimated. In conclusion, the use of virtual sensors such as those 
presented in this work are very useful to monitor continuous microalgae cultures. 
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