

Síntesis de catalizadores heterogéneos de metátesis para el desarrollo de procesos sustentables

Lidia García Barrera, Daniel Zárate-Saldaña, Jorge A. Cruz-Morales y Selena Gutiérrez Flores *

Laboratorio de Química Sustentable, Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México

* Autor de correspondencia: sgutierrezf@unam.mx

Recibido: 23 de abril de 2021 Aceptado: 7 de mayo de 2021

Resumen: En las últimas décadas, se busca desarrollar procesos que impliquen el uso de catalizadores que puedan ser recuperados del medio de reacción, para lograr que éstos se tornen verdes y sustentables. Aproximadamente, el 90 % de todos los procesos en química y petroquímica emplean catalizadores heterogéneos. En este rubro, los catalizadores heterogéneos soportados presentan ventajas en la purificación de los productos y la disminución de costos. En el presente trabajo se realizó la síntesis de un nuevo catalizador heterogéneo soportado, altamente activo en la reacción de metátesis, con base en un complejo de rutenio-alquilideno. El nuevo catalizador se obtuvo mediante el anclaje del dicloro[1,3-bis(2,4,6-trimetilfenil)-2-imidazolidinilideno](bencilideno)(triciclohexilfosfina)rutenio (II) (Grubbs de segunda generación) en diversos geles poliméricos sililados, a base de anhídrido-2-norbornen-5,6-dicarboxílico (NDA) y cis-cicloocteno (CO) entrecruzados con diversos porcentajes de 3-aminopropiltrietoxisilano (APTES) (5%, 15% y 100%). El nuevo catalizador heterogéneo fue empleado exitosamente en la reacción de depolimerización vía metátesis del hule natural de Oaxaca (HNO), empleando 1-octeno como ATC; observándose la formación de oligómeros líquidos, lográndose una disminución del peso molecular de 137,941 g/mol a 297 g/mol; comprobándose, de esta manera, su alta efectividad.

Palabras clave: catalizadores heterogéneos; geles poliméricos; metátesis, procesos sustentables.

Synthesis of heterogeneous metathesis catalysts for the development of sustainable processes

Abstract: In recent decades, it has been tried to develop processes that involve the use of catalysts that can be recovered from the reaction medium, to make them green and sustainable. Approximately, 90 % of all processes in chemistry and petrochemicals use heterogeneous catalysts. In this sense, the supported heterogeneous catalysts present advantages in the purification of the products and the reduction of costs. In the present work, the synthesis of a new heterogeneous supported catalyst, highly active in the metathesis reaction, based on a ruthenium-alkylidene complex, was carried out. The new catalyst was obtained by anchoring of dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene](benzylidene)(tricyclohexylphosphine)ruthenium (II) (second generation Grubbs) in various silylated polymeric gels, based on 2-norbornene-5,6-dicarboxylic anhydride (NDA) and *cis*-cyclooctene (CO) cross-linked with various percentages of 3-aminopropyltriethoxysilane (APTES) (5%, 15%, 100%). The new heterogeneous catalyst was successfully used in the depolymerization reaction via metathesis of natural rubber from Oaxaca (HNO), using 1-octene as CTA; observing the formation of liquid oligomers, achieving a decrease in molecular weight from 137.941 g/mol to 297 g/mol; proving, in this way, its high effectiveness.

Keywords: heterogeneous catalysis; polymer gels; metathesis; sustainable processes.

Introducción

En los últimos años, el impacto ambiental en la industria química ha recibido especial atención, enfocándose en la disminución de residuos o desechos, y en la optimización de rutas sintéticas; con el fin de garantizar procesos no sólo rentables y eficientes, sino también sustentables (Cambra et al., 2019). Recientemente, se ha dado especial importancia a la búsqueda, desarrollo y mejora de los catalizadores heterogéneos, debido a su importante participación en numerosos procesos químicos de alto impacto económico (Yilmaz & Müller, 2009). Aproximadamente, nueve de cada diez procesos químicos utilizan catalizadores heterogéneos. El uso de éstos se dirige principalmente a la industria química, y en aplicaciones ambientales y de refinería; por ejemplo: el craqueo de queroseno y de residuos de destilación atmosférica del petróleo crudo para producir gasolina (Hagen, 2015). Las ventajas del uso de catalizadores heterogéneos conllevan ahorros de purificación de productos, reducción de la contaminación atmosférica, y recuperación y reutilización del catalizador.

Por otro lado, gracias al aporte de los catalizadores, se ha podido avanzar, y desarrollar nuevas rutas de síntesis (Kamel & Khattab, 2021; Kandathil *et al.*, 2021). En ese sentido, la reacción de metátesis ha demostrado ser una herramienta muy poderosa y atractiva debido a su versatilidad y contribución en la química orgánica, la química verde y la química sostenible (Martínez *et al.*, 2014; Zárate-Saldaña *et al.*, 2020), especialmente, en las áreas de: petroquímica, oleoquímica, polímeros y productos de química fina; para la obtención de productos de interés comercial como: detergentes, feromonas, polímeros biodegradables, moléculas con actividad farmacológica, entre otros; siendo uno de los ejemplos con mayor impacto a nivel industrial, la síntesis del polioctenámero a base de norborneno (Vestenamer®), polímero empleado exitosamente en últimos años en la recuperación de petróleo en derrames acuíferos (Pineda *et al.*, 2018).

El aporte de este trabajo es la obtención de un catalizador heterogéneo de metátesis, soportado en un gel polimérico sililado, el cual busca contribuir al desarrollo de procesos sustentables, evitando o disminuyendo los procesos de purificación de los productos, contribuyendo a un ahorro neto de energía, reduciendo la formación de productos secundarios y/o de desechos; e incluso, con aplicación en la degradación de hules para fomentar su reciclaje.

Materiales y Métodos

Todos los reactivos y disolventes: anhídrido maleico (99 %), diciclopentadieno (95 %), *cis*-cicloocteno (CO, 95 %), 1-octeno (98 %), 3-Aminopropiltrietoxisilano (APTES, 99 %), 2,5-diterbutilhidroquinona (99 %), dicloro[1,3-*bis*(2,4,6-trimetilfenil)-2-imidazolidinilideno](bencilideno)(triciclohexilfosfina)rutenio (II) (Grubbs de segunda generación (3), 97 %), 1,2-dicloroetano anhidro, 1,2,4-triclorobenceno R.A., metanol R.A., aceite de naranja, cloroformo R.A., *n*-hexano R.A., petróleo y tolueno R.A.; fueron adquiridos en Sigma-Aldrich, y se usaron tal como se recibieron. El hule natural de Oaxaca (HNO) (HEM 20) se compró directamente en las plantaciones y fue extraído del árbol del *Hevea Barasiliensis*.

Para la caracterización por FT-IR de los geles poliméricos y los productos de depolimerización se utilizó un espectrofotómetro Thermo Scientific NICOLET 6700 FT-IR, equipado con una celda ATR de diamante. Los espectros fueron obtenidos con una resolución de 4 cm⁻¹ en un intervalo de 4,000 a 400 cm⁻¹. Para los espectros de ¹H-RMN se utilizó un espectrómetro VARIAN, operado a 400 MHz; utilizando cloroformo deuterado (CDCl₃) como disolvente, y tetrametilsilano (TMS) como patrón interno de referencia. Por último, el análisis por SEM-EDS se utilizó un equipo JEOL JSM-5900 con el uso de electrones retrodispersados. Para esta técnica, los materiales fueron analizados en forma de membranas preparadas por el método de "solving casting", a temperatura ambiente, y con recubrimiento de oro.

Síntesis del monómero anhídrido-2-norbornen-5,6-dicarboxílico (NDA). Para ello, se pesaron 4.00 g (40.79 mmol) de anhídrido maleico y se disolvieron en 25 mL de 1,2,4-triclorobenceno. La disolución resultante se mantuvo en agitación y reflujo, a una temperatura de 200 °C, hasta observar una mezcla homogénea. Posteriormente, se agregó una disolución de 2.70 g (20.39 mmol) de diciclopentadieno, en 4 mL de 1,2,4-triclorobenceno. Finalizada la adición, la reacción se dejó a reflujo durante 3 horas. Una vez transcurrido el tiempo, el crudo de reacción se dejó enfriar y se precipitó en 50 mL de *n*-hexano, obteniéndose un sólido amarillo oscuro. El producto obtenido se recristalizó en caliente, con tolueno, hasta obtener un sólido totalmente blanco cristalino. Se obtuvieron 5.61 g de NDA, con un rendimiento del 83 %.

Copolímero al azar con base en los monómeros NDA y CO. En un matraz bajo atmósfera de N₂, se pesaron 1.00 g (6.09 mmol) de NDA, y 0.67 g (6.09 mmol) de *cis*-cicloocteno; y se disolvieron en 13 mL de 1,2-dicloroetano anhidro. Posteriormente, se adicionaron 0.5 mL de una disolución de 2x10⁻⁵ mol/mL de catalizador **3**. La disolución se mantuvo en agitación constante, a temperatura ambiente, y se dejó reaccionar durante 2 horas. Una vez terminado el tiempo, el crudo de reacción se precipitó lentamente en una disolución de *n*-hexano (40 mL) y estabilizador (2,5-diterbutilhidroquinona) hasta obtener un sólido fibroso de color café. Se obtuvieron 1.68 g del copolímero al azar NDA-CO, con un rendimiento del 98 %.

Síntesis del gel polimérico. Se disolvieron 1.68 g (6.13 mmol) del copolímero NDA-CO, en 20 mL de 1,2-dicloroetano anhidro. De forma independiente, se disolvieron 0.05 g de 3-aminopropil trietoxisilano (APTES), en 10 mL de 1,2-dicloroetano anhidro. Posteriormente, la disolución de APTES se adicionó a la disolución del copolímero y se dejó reaccionar durante 24 horas, en agitación constante, a temperatura ambiente. El sólido obtenido se secó a vacío

durante un periodo de 24 horas. De esta manera, se obtuvieron 1.55 g un sólido altamente elástico, no fibroso, de color ámbar, con un rendimiento del 93 %.

Pruebas de hinchamiento del gel polimérico. El gel se cortó en ocho partes, cada una con un peso de 0.19 ± 0.03 g. Cada fracción de gel polimérico se colocó en un vial con 5 mL de cada uno de los disolventes empleados para esta prueba: petróleo, n-hexano, tolueno, cloroformo, 1,2-dicloroetano, metanol, agua y aceite de naranja. Cada prueba se dejó por un periodo de 48 horas. Terminado el tiempo, los geles fueron retirados del disolvente, se retiró el exceso de disolvente que humedecía a los materiales con ayuda de un rotavapor y, por gravimetría se obtuvo el porcentaje de hinchamiento para el gel, con cada uno de los disolventes.

Densidad de entrecruzamiento (n) de la serie APTES. Ésta fue determinada con el uso de la ecuación de Flory-Renher. (Flory, 1950; Flory & Rehner, 1943a, 1943b) Específicamente, se utilizaron los valores de porcentaje de hinchamiento de la serie APTES en cloroformo, debido a que éste presentó un mayor hinchamiento junto con el 1,2-dicloroetano, pero se prefirió utilizar el cloroformo debido a su facilidad de manejo y menor costo. Los diferentes parámetros de solubilidad δ_1 y los parámetros de interacción polímero-disolvente χ_{12} requeridos para el cálculo de la densidad de entrecruzamiento fueron calculados por el método de contribución de grupos, como fue reportado por Zárate-Saldaña (Zárate Saldaña, 2021).

Síntesis del catalizador heterogéneo de metátesis (4). Se prepararon 0.5 mL de una disolución de $1.18 \times 10^{-6} \text{ mol/ml}$ del catalizador 3, en 1,2-dicloroetano anhidro, bajo atmósfera de N_2 . Por otro lado, se pesaron 0.30 g del gel polimérico, seco, bajo atmósfera de N_2 ; y con la ayuda de una cánula se adicionó la disolución del catalizador. El matraz se mantuvo en agitación, durante 24 horas, a temperatura ambiente. Posteriormente, se aisló el catalizador heterogéneo de metátesis en un matraz.

Depolimerización vía metátesis del HNO, empleando el catalizador heterogéneo (4). En un matraz, bajo atmósfera de N_2 , se pesaron 0.50 g del HNO, y se disolvieron en 25 mL de 1,2-dicloroetano anhidro. La disolución se mantuvo en agitación constante, a temperatura ambiente, hasta disolver por completo el hule. Posteriormente, se adicionaron 1.25 mL de 1-octeno, y se agregó 0.50 g del catalizador heterogéneo de metátesis (4). La reacción de depolimerización se mantuvo en agitación, a una temperatura de 40 °C, durante 48 horas. Al término de la reacción, los productos se precipitaron en una disolución ácida de metanol, y posteriormente, se aislaron y secaron. De esta manera se obtuvo un producto líquido color ocre, con aspecto viscoso, con un rendimiento del 99 %. El catalizador heterogéneo se aisló mecánicamente del medio de reacción, se lavó con 1,2-dicloroetano anhidro y se mantuvo bajo atmósfera de N_2 , para su uso posterior.

Resultados y Discusión

Como primer paso se obtuvo el monómero NDA mediante una cicloadición entre el ciclopentadieno y el anhídrido maleico, a través de una reacción del tipo Diels-Alder, como se observa en el paso 1, de la Figura 1. Su caracterización por la técnica ¹H-RMN confirmó la estructura, e isomería *exo/endo* del monómero, con una relación de isómeros *endo* y *exo* del 45.45% y 54.55%; respectivamente (Figura 2).

Como segundo paso, se sintetizó el copolímero al azar NDA-CO, mediante una reacción de polimerización vía metátesis por apertura de anillo (ROMP), entre los monómeros NDA y CO, con una relación 1:1 entre ambos; utilizando el catalizador 3; como se observa en el paso 2, de la Figura 1. Asimismo, su caracterización por la técnica ¹H-RMN confirmó la estructura, y sus diversas conformaciones *cis/trans* e isomerías *exo/endo*. Con la caracterización por ¹H-RMN se determinó que el copolímero al azar posee una composición de monómeros NDA/CO = 0.7/1.3 (35% / 65%) (Figura 3).

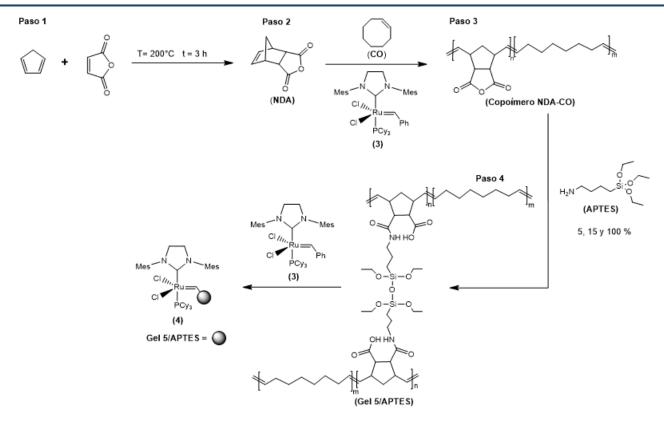


Figura 1. Ruta de síntesis del catalizador heterogéneo de metátesis (4).

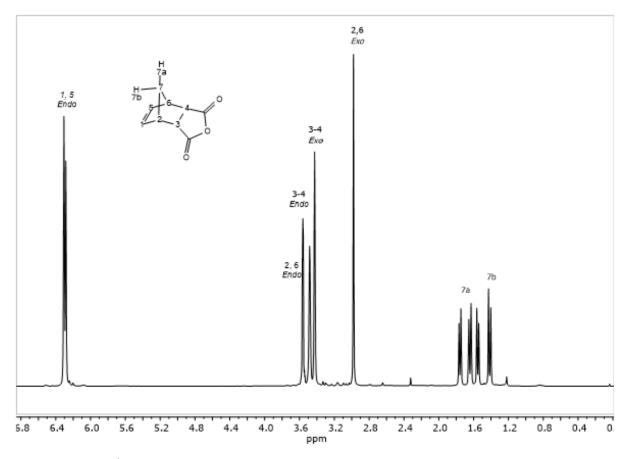


Figura 2. Espectro ¹H-RMN (400 MHz, cloroformo-d, Me₄Si) del anhídrido-2-norbornen-5,6-dicarboxílico (NDA).

Obtenido el copolímero al azar NDA-CO, se realizó la síntesis de los geles poliméricos usando APTES como agente entrecruzante (paso 3, Figura 1). En términos generales, la reacción consta de un ataque nucleofílico por parte de los grupos amina del APTES hacía los grupos anhídrido del copolímero, y de manera sincrónica, una condensación entre los grupos trimetilsilil. De esta manera, se obtuvieron tres distintos geles poliméricos denotados como "serie APTES": con un 5 % de APTES (5/APTES), un 15 % de APTES (15/APTES) y un 100 % de APTES (100/APTES); con excelentes rendimientos, del 93, 97 y 99 %; respectivamente. Su obtención fue confirmada mediante FT-IR. En la Figura 4 se observa la comparativa entre los espectros de FT-IR del copolímero NDA-CO y la serie APTES, y se aprecia una nueva señal en los espectros de la serie APTES, en la región arriba de 3,000 cm⁻¹, la cual se debe a la absorción del estiramiento del O-H, que aparece después de la adición del APTES. Esta señal se ensancha y se intensifica con el aumento del agente entrecruzante, debido a la apertura del anillo del anhídrido. Conforme aumenta el porcentaje de APTES, las señales asociadas al estiramiento simétrico y asimétrico del grupo carbonilo presente en los grupos anhídrido van disminuyendo de intensidad hasta desaparecer, como en el caso del espectro del gel 100/APTES. En su lugar, aparecen dos señales en los espectros de la serie APTES: la primera en 1,639 cm⁻¹ que se asocia con el estiramiento de los grupos carbonilo perteneciente a los grupos amida, y la segunda señal aparece en 1,545 cm⁻¹ que corresponde a la flexión de enlace N-H de las amidas. Por último, se aprecia otra nueva señal en los espectros de la serie APTES, la cual corresponde a la tensión de los enlaces Si-O-Si, en 1,079 cm⁻¹, cuya intensidad aumenta con respecto al porcentaje del agente entrecruzante APTES.

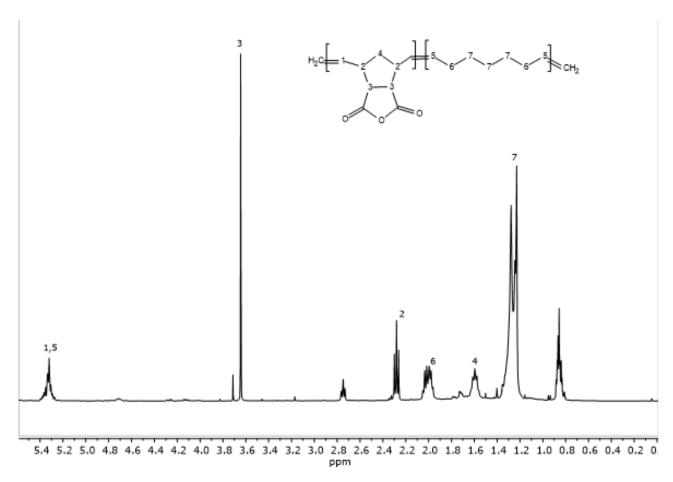


Figura 3. Espectro ¹H-RMN (400 MHz, cloroformo-d, Me₄Si) del copolímero NDA-CO.

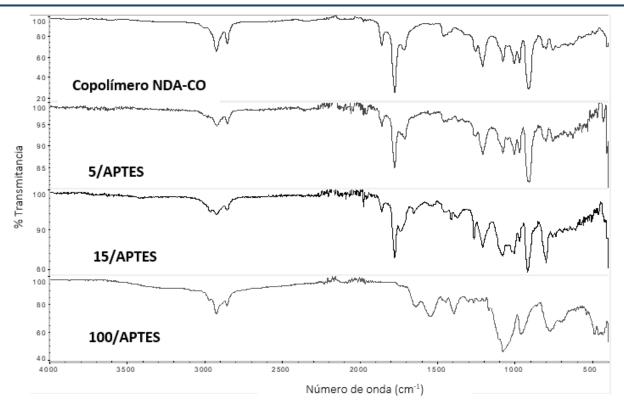


Figura 4. Comparación de los espectros FT-IR del copolímero NDA-CO y la serie APTES.

Asimismo, la caracterización por EDS-SEM confirmó un aumento en el porcentaje de silicio en el gel, conforme aumentó la cantidad de APTES adicionado; como se muestra en la Tabla 1.

Tabla 1. Porcentaje de silicio (% Si) obtenido mediante microanálisis EDS-SEM para el copolímero NDA-CO y la serie APTES.

Polímero	% Si
Copolímero NDA-CO	0.1
5/APTES	1.7
15/APTES	4.0
100/APTES	6.8

La determinación del porcentaje de hinchamiento de la serie APTES, en los disolventes empleados, indicó que los geles poliméricos mostraron un comportamiento medianamente polar y más afín a disolventes orgánicos, debido a que su estructura está conformada por cadenas alquílicas no polares; y grupos polares como las amidas, anhidridos y siloxanos. Además, como se puede observar en la Figura 5, se alcanza un máximo con el 1,2-dicloroetano; y posteriormente, con el resto de los disolventes empieza a haber un descenso (exceptuando a las mezclas de petróleo y el aceite de naranja). Esto se debe a que el porcentaje de hinchamiento depende de dos factores: la afinidad del polímero por el disolvente y el grado de entrecruzamiento.

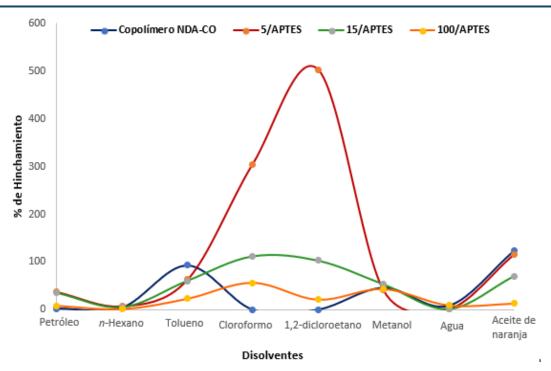


Figura 5. Porcentaje de hinchamiento del copolímero NDA-CO y la serie APTES.

Tabla 2. Valores de densidad de entrecruzamiento **n** para la serie APTES.

% APTES	n (mol/cm³) (10⁴)
5	0.592
15	13.596
100	50.725

Posterior a la síntesis y caracterización de los geles poliméricos, se seleccionó el gel 5/APTES como soporte del catalizador heterogéneo de metátesis (4) (paso 4, Figura 1) debido a sus altos porcentajes de hinchamiento. El catalizador heterogéneo de metátesis (4) se preparó *in situ* adicionando una disolución 5.55x10⁻⁶ mol/mL del catalizador 3, al gel 5/APTES, en agitación, a temperatura ambiente, durante un lapso 72 horas (*reacción 1*, Tabla 3). Transcurrido el tiempo de reacción, se observó que el gel 5/APTES se degradó formando oligómeros. Esto se debió a que el gel polimérico reaccionó vía metátesis intramolecular debido a los dobles enlaces que contiene en su estructura. Por este motivo, se modificaron las cantidades y condiciones de la reacción. Por lo cual, se realizó una segunda reacción, empleando una disolución 1.18x10⁻⁶ mol/mL del catalizador 3, a temperatura ambiente, en agitación, durante un lapso de 24 horas (*reacción 2*, Tabla 3). En la Tabla 3 se resumen las condiciones de reacción para la obtención del catalizador heterogéneo de metátesis (4).

Tabla 3. Condiciones de reacción para la obtención del catalizador heterogéneo de metátesis (4), usando el gel 5/APTES como soporte, y el catalizador de Grubbs de segunda generación (3), a temperatura ambiente.

Reacción	Tiempo de formación del catalizador (h)	Concentración de la disolución de catalizador (mol/mL)
1	72	5.55x10 ⁻⁶
2	24	1.18x10 ⁻⁶

Al reducir el tiempo de formación del catalizador heterogéneo de metátesis (reacción 2, Tabla 3), no se observó la degradación del gel y se obtuvo un catalizador heterogéneo. El catalizador obtenido es un sólido altamente elástico, no fibroso, de color rojo oscuro, el cual se aisló en un matraz, bajo atmosfera de N₂ para mantenerlo activo.

Una vez obtenido el catalizador heterogéneo de metátesis, se evaluó su eficiencia en una reacción de depolimerización vía metátesis. Como primer paso fue necesario realizar la caracterización del HNO mediante 1 H-RMN; de esta manera se determinó su estructura química, y la composición de isómeros presentes en este material polimérico. En la Figura 6 se muestra el espectro de 1 H-RMN del HNO, en este se observan las señales esperadas para la estructura del poliisopreno, con isomería cis en el doble enlace. Con este espectro se determinó que el HNO está compuesto en un 99 % de cis-1,4-poliisopreno, debido a que la señal de los hidrógenos del doble enlace del isómero trans-1,4-poliisopreno se presentan en un desplazamiento químico mayor, con respecto a las observadas con el isómero cis. El peso molecular de este hule, reportado por el grupo de investigación, es de M_n = 137,941 g/mol, con un índice de polidispersidad (PDI) de 1.6, el cual fue determinado mediante cromatografía de permeación en gel (GPC) (Ramírez Álvarez, 2021).

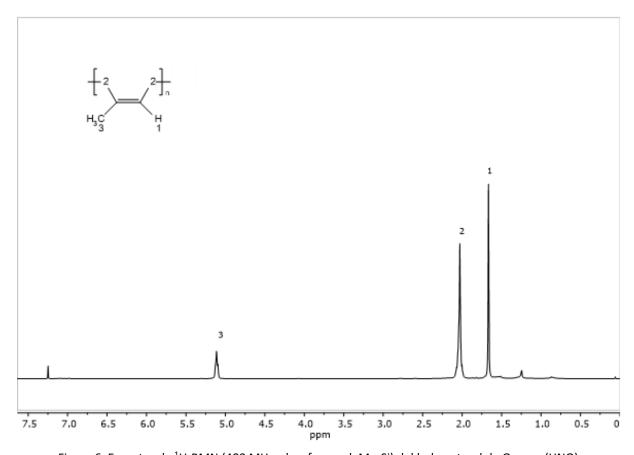


Figura 6. Espectro de ¹H-RMN (400 MHz, cloroformo-d, Me₄Si) del hule natural de Oaxaca (HNO).

Posterior a la caracterización del HNO se realizó su depolimerización vía metátesis intermolecular, empleando el catalizador heterogéneo (4); utilizando como agente de transferencia de cadena (ATC) al 1-octeno, con una relación molar de dobles enlaces hule/ATC ([C=C]/ATC) de 1:1. En la Figura 7 se observa tal reacción, y se presentan todos los posibles productos debido al uso de la olefina asimétrica 1-octeno. De esta reacción se pueden obtener: a) oligómeros formados por unidades de isopreno, un grupo terminal metileno y un grupo terminal hepteno (tipo i); b) oligómeros con unidades de isopreno y grupos terminales bis-metileno (tipo ii); y c) oligómeros con unidades isopreno y grupos terminales bis-hepteno (tipo iii).

$$H_{3}$$
C $(CH_{2})_{3}$ H_{3} C $(CH_{2})_{3}$ H_{3} C $(CH_{2})_{3}$ H_{3} C $(CH_{2})_{3}$ H_{3} C $(CH_{2})_{3}$ $(CH_$

Figura 7. Reacción de depolimerización vía metátesis intermolecular del HNO en presencia del catalizador heterogéneo de metátesis (4).

La reacción de depolimerización se realizó exitosamente, obteniéndose como producto un líquido de color ocre con aspecto viscoso, con un rendimiento excelente del 99 %. La mezcla de productos fue caracterizada por ¹H-RMN como se muestra en la Figura 8, y se observa qué, el producto principal de depolimerización fue el que contiene grupos terminales *bis*-hepteno (*tipo iii*). De igual manera, en este espectro se logró detectar una señal que se puede asociar a oligómeros de degradación del catalizador heterogéneo de metátesis (4). Esto se debe al que el gel polimérico posee dobles enlaces en su estructura, y reaccionaron simultáneamente en la depolimerización del HNO.

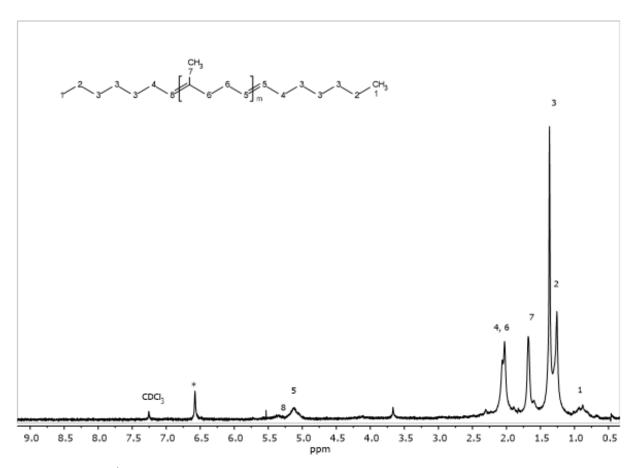


Figura 8. Espectro de ¹H-RMN (400 MHz, cloroformo-d) de los productos de depolimerización del HNO. (*) señal de los oligómeros de degradación del catalizador heterogéneo de metátesis (**4**).

Cabe mencionar qué, el producto con grupos terminales *bis*-hepteno no era esperado como mayoritario debido a que el ATC usando es asimétrico. Se esperaba la obtención del dieno monomérico asimétrico formado por un grupo terminal metileno y un grupo terminal hepteno (tipo *i*)(Gutiérrez et al., 2004a). Sin embargo, la obtención del producto mayoritario tipo *iii* se puede explicar por la presencia de la reacción secundaria de *self*-metátesis del 1-octeno (ATC)

para formar etileno y 7-tetradeceno (Figura 9). El etileno gaseoso es liberado del medio de reacción, y de esta manera, el fragmento metileno no está disponible para seguir participando en la formación de productos, específicamente, para la formación del dieno monomérico; quedando en su lugar, un nuevo ATC bis-hepteno capaz de reaccionar con el HNO y producir oligómeros tipo iii.

Figura 9. Reacción de self-metátesis del 1-octeneo.

Por otro lado, el análisis de grupos terminales (=CH(CH₂) $_5$ CH₃) por 1 H-RMN (Figura 8) determinó que el número de unidades repetitivas de isopreno, en los productos de depolimerización tipo *iii*, es m = 1.49, correspondiente a una masa molar de 297.32 g/mol; por lo que se observa no sólo una clara disminución de la masa molar inicial del hule desde 137, 941 g/mol; si no que existe un gran control en la degradación, debido a que estos valores están muy cercanos a los valores teóricos de m = 1, y una masa molar de 264 g/mol. Esto significa, que la reacción de metátesis en presencia del catalizador heterogéneo (4), no sólo posee excelentes rendimientos; también permite un control eficiente en la depolimerización del hule, a pesar del uso de una ATC asimétrico.

En general, este tipo de reacciones son complicadas desde el punto de vista químico, debido a que el *cis*-1,4-poliisopreno tiene baja tensión en su estructura y presenta cierto impedimento estérico debido a la presencia de un grupo metilo directamente enlazado al carbono del doble enlace, lo cual dificulta su coordinación con el centro activo de Ru. Por lo antes dicho, las depolimerizaciones vía metátesis requieren catalizadores altamente estables y selectivos, como los catalizadores homogéneos de Ru-alquilideno (catalizadores de Grubbs). En este sentido, el catalizador heterogéneo de metátesis (4) resultó ser eficiente y capaz de llevar a cabo la reacción, pero es necesario profundizar en el estudio del control y la formación de productos, debido a la posible presencia de reacciones secundarias (por el uso de olefinas simétricas); y a los efectos estructurales y físicos propios del catalizador heterogéneo de metátesis (4). El catalizador (4) tiene una estructura diferente al catalizador de Grubbs de segunda generación, contiene grupos oxigenados, sililados, amidas y ácidos, esto puede afectar la forma que se coordina el ATC y el HNO. Adicionalmente, la difusión de los reactivos estará determinada por la estructura del gel polimérico, por ende, las propiedades del catalizador como son la estabilidad y selectividad serán diferentes a sus homólogos homogéneos de tipo Grubbs.

En la actualidad se han reportado un gran número de catalizadores heterogéneos de metátesis, principalmente usados en reacciones relativamente sencillas, como las polimerizaciones vía metátesis tipo ROMP de compuestos con anillos altamente tensionados (Ünnü & Çetinkaya, 2018); pero no se han estudiado reacciones más complicadas como la depolimerización vía metátesis. En ese sentido, existen trabajos de depolimerizaciones vía metátesis con catalizadores homogéneos del tipo Grubbs, en donde se reporta una selectividad diferente a la mostrada en este trabajo. En tales trabajos, se obtuvo como producto mayoritario al dieno monomérico tipo *i* (Gutiérrez, 2004; Gutiérrez et al., 2004b), en contraste con el catalizador heterogéneo de metátesis (4), que favoreció a los productos oligoméricos con unidades isopreno y grupos terminales *bis*-hepteno (tipo *iii*). Aun así, el catalizador (4) presentó una eficiencia equiparable a sus homólogos homogéneos para esta reacción, debido que logró una depolimerización controlada, a profundidad, y con altos rendimientos para degradar al *cis*-1,4-poliisopreno (HNO), a pesar de las dificultades que ya se explicaron con anterioridad.

Los resultados obtenidos presentan un panorama prometedor para el uso del catalizador heterogéneo de metátesis (4), no sólo en reacciones de depolimerización las cuales a pesar de ser complicadas mostraron resultados favorables, sino también en otro tipo de reacciones de metátesis. Sin embargo, es necesario realizar más pruebas que ayuden a determinar su eficiencia y rendimiento (TON, TOF), así como elucidar su mecanismo de acción. Asimismo, deben realizarse modificaciones en el punto de anclaje para evitar futuras degradaciones. En general, deben realizarse estudios sobre la aplicación del catalizador heterogéneo de metátesis (4) en los diversos tipos de reacciones de metátesis para comprender los procesos químicos de coordinación del centro activo del Ru con los sustratos y, obtener información sobre los productos; todo esto con el fin de implementar este tipo de catalizadores en la industria y lograr procesos verdes y sustentables.

Conclusiones

Se sintetizó de manera exitosa el catalizador heterogéneo de metátesis a base de rutenio (4) a través de la ruta sintética propuesta, con rendimientos mayores al 90 %. Al evaluar la eficiencia catalítica en la reacción de depolimerización vía metátesis del HNO se observó que, el catalizador (4) es altamente activo, debido a que se logró reducir la masa molecular inicial del polímero, de 137,941 a 297 g/mol, siendo este último peso muy cercano al valor teórico esperado de 264 g/mol. De igual manera, el nuevo catalizador heterogéneo mostró buen control en la depolimerización, favoreciendo la formación de productos con grupos terminales *bis*-hepteno (tipo *iii*). Los resultados obtenidos, son equiparables a los reportados con catalizadores homogéneos a base de Ru. Con esto, se puede decir que el catalizador (4) es prometedor hacía las diversas reacciones de metátesis, con lo cual se podrán obtener productos de alto valor industrial mediante procesos más sustentables.

Bibliografía

- Cambra, J. F., Barrio, V. L., Arias, P. L., & Requies, J. (2019). Preface to International Symposium of Catalysis for Clean Energy and Sustainable Chemistry (CCESC2018). *Topics in Catalysis 2019 62:5, 62*(5), 427–428.
- Flory, P. J. (1950). Statistical mechanics of swelling of network structures. The Journal of Chemical Physics, 18(1), 108-111.
- Flory, P. J., & Rehner, J. (1943a). Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. *The Journal of Chemical Physics*, 11(11), 512–520.
- Flory, P. J., & Rehner, J. (1943b). Statistical mechanics of cross-linked polymer networks II. Swelling. *The Journal of Chemical Physics*, 11(11), 521–526.
- Gutiérrez, S. (2004). Sintesis de productos bien definidos, vía depolimerizacion por metatesis, de hule natural y cis-1,4-polibutadieno. Universidad Nacional Autónoma de México.
- Gutiérrez, S., Vargas, S. M., & Tlenkopatchev, M. A. (2004a). Computational study of metathesis degradation of rubber. Distributions of products for the ethenolysis of 1,4-polyisoprene. *Polymer Degradation and Stability*, *83*(1), 149–156.
- Gutiérrez, S., Vargas, S. M., & Tlenkopatchev, M. A. (2004b). Molecular modeling of ring-chain equilibria for the ring-opening cross-metathesis of cis.cis-1.5-dimethyl-cycloocta-1.5-diene with ethylene at T = 298.15 K. *Journal of Chemical Thermodynamics*. 36(1), 29–36.
- Hagen, J. (2015). Heterogeneous Catalysis: Fundamentals. In *Industrial Catalysis: A Practical Approach* (pp. 99–210). Wiley-VCH Verlag GmbH & Co. KGaA.
- Kamel, S., & Khattab, T. A. (2021). Recent advances in cellulose supported metal nanoparticles as green and sustainable catalysis for organic synthesis. *Cellulose 2021 28:8*, 28(8), 4545–4574.
- Kandathil, V., Veetil, A. K., Patra, A., Moolakkil, A., Kempasiddaiah, M., Somappa, S. B., Rout, C. S., & Patil, S. A. (2021). A green and sustainable cellulosic-carbon-shielded Pd–MNP hybrid material for catalysis and energy storage applications. *Journal of Nanostructure in Chemistry* 2021 11:3, 11(3), 395–407.
- Martínez, A., Clark-Tapia, R., Gutierrez, S., & Tlenkopatchev, M. (2014). Synthesis and Characterization of New Ruthenium Vinylidene Complexes. Letters in Organic Chemistry, 11(10), 748–754.
- Pineda, A., Vargas, J., Santiago, A., Martínez, A., Cruz-Morales, J., Reyes, S., Burelo, M., & Gutiérrez, S. (2018). Metátesis de olefinas en México: desarrollo y aplicaciones en nuevos materiales poliméricos y en química sustentable. *Materiales Avanzados, 29,* 65–81.
- Ramírez Álvarez, R. (2021). Innovación y evaluación de rutas verdes para obtener una mezcla de biocombustibles tipo diésel-biodiésel. Universidad Nacional Autónoma de México.
- Ünnü, V. Ş., & Çetinkaya, S. (2018). Synthesis and Catalytic Activity of PolyHIPE-Supported NHC-Bearing Ruthenium Initiator for ROMP. *Catalysis Letters*, 148(8), 2432–2445.
- Yilmaz, B., & Müller, U. (2009). Catalytic applications of zeolites in chemical industry. *Topics in Catalysis*, 52(6–7), 888–895.
- Zárate-Saldaña, D., Landeros-Rivera, B., Cruz-Morales, J. A., & Gutiérrez, S. (2020). Metathesis of norbornene-derivatives bearing trimethylsilyl groups using Ru-alkylidene catalysts: An experimental and computational study. *Journal of Organometallic Chemistry*, 913, 121206.
- Zárate Saldaña, D. (2021). Preparación de nuevas membranas poliméricas biodegradables a a base de derivados sililados de norborneno.

 Universidad Nacional Autónoma de México.

