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Abstract: Failures in photovoltaic systems are a problem of great importance because they cause a deterioration in the production of electrical 
energy, among which is the dust on the surface of the photovoltaic system. This paper proposes a method to detect dust on the surface of a 
photovoltaic system in series configuration. In addition, shows by visual inspection that the IV characteristic of a photovoltaic panel is equal to 
the IV characteristic of a photovoltaic system. To obtain the results, 120 signals were used, 60 for the design of the method and the rest for the 
validation of the method. The proposed method only yielded 2 false positives out of 30 signals where there was no fault present. 
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Introduction 
 
Through the years, energy has been the most important resource for humanity. Because technological development 
and social welfare demand a higher energy requirement. Caused by population growth, quick urbanization, and 
industrialization. This growing demand has prompted scientific communities to develop efficient and environmentally 
friendly energy sources. 
 
(Bhattacharya et al., 2016) state that the United Nations designated the period 2014-2024 as the decade of sustainable 
energy for all. The main advantage of using clean energy is a reduction in the emission of greenhouse gases, providing 
a healthier environment. Following the most optimistic scenario developed by the International Energy Agency (IEA) 
and the report by (Shahbaz et al., 2020), renewable energy in electricity generation will increase to 39% by 2050 causing 
a reduction of CO2 by 50%. 
 
Solar energy is one of the main sources of environmentally friendly energy, which is acquired through the use of 
photovoltaic systems (PVS). Despite the benefits that PVS provide to energy sustainability. These are vulnerable to the 
presence of faults, which makes the energy conversion efficiency not maximum. This has generated great interest for 
researchers and the photovoltaic (PV) industry in faults detection. (Belboula et al., 2019; Livera et al., 2019; Platon et 
al., 2012; Takashima et al., 2009; A. Woyte et al., 2013; Achim Woyte et al., 2003) statement that the failures they can 
occur due to different electrical or environmental factors. Among the environmental factors is dust on the surface of 
the PVS, which we will address in this investigation. 
 
Nowadays there are two paradigms for the faults detection in PVS. The first paradigm is found in the works reported 
by (Chaibi et al., 2019; Chouay & Ouassaid, 2018; Das et al., 2018; Dhimish et al., 2017; Fadhel et al., 2020; Hajji et al., 
2020; Hu et al., 2017; Kumar et al., 2018; Lu et al., 2019; Mekki et al., 2016; Rouani et al., 2021; Sowthily et al., 2021; 
Yi & Etemadi, 2017). The procedures reported under this paradigm focus on the use of learning machines (supervised 
or unsupervised approach), which employ a coherent detection point of view. (Mellit et al., 2018) state that the main 
drawback in this paradigm is that they require very advanced skills to implement them in real time and databases (of 
different failures) that are not always available. 
 
The second paradigm presents a non-learning approach, which we call non-coherent detection. Such an approach 
maximizes its adaptability to any PVS and does not require a large volume of data to learn information about the 
presence of PVS faults. The procedure developed in this work is based on the second paradigm, where the following 
publications have been found: 
 
(Garoudja et al., 2017) present a model focused on faults detection produced by shadows through the implementation 
of thresholds and wavelet packets. These researchers present the use of the exponential weighted moving average 
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(EWMA) to detect incipient changes in PVS. Besides, they explain how they use thresholds for the faults decision 
process. The main drawback of the work presented is that the authors do not show the percentage of false alarm rate 
(FAR, in this work they will be called false positives (PFP)) produced by their algorithm. 
 
(Kumar et al., 2018) present an algorithm to detect partial shadow faults online using wavelet packets. The main 
drawback of this proposal is that they do not use a mathematical method to obtain the fault detection thresholds and 
they do not show the PFP presented by their algorithm. 
 
(Mansouri et al., 2018) present an algorithm based on EWMA, multi-objective optimization (MOO) and wavelet 
representation. These researchers indicate the use of MOO to solve the problem of selecting the optimal solution from 
the following two objective functions: (i) miss detection rate (MDR) and (ii) PFP. 
 
(Fezai et al., 2019) propose an online reduced kernel generalized likelihood ratio test (OR-KGLRT) technique to improve 
faults detection in PVS. These authors use the FAR as a performance criterion. 
 
(Harrou et al., 2019) present a robust and flexible strategy for faults detection in PVS connected to the network based 
on the multi-scale representation of data using Wavelets transform and EWMA. These authors use FAR to evaluate the 
performance of their algorithm. 
 
(Zhao et al., 2020) present a method based on the collaborative faults detection in PVS using filtering techniques. These 
authors use a method to obtain an automatic threshold that allows them to identify the failures caused but does not 
show the FAR produced by their algorithm. 

 
Despite the advances made by the scientific community under the second paradigm, the reported works do not validate 
their algorithms in the presence of failures with field measurements. They also do not take into account the challenges 
reported by (Mellit et al., 2018) aimed at the development of detection techniques that are characterized by their 
efficiency and simplicity in terms of implementation. In addition, the reported works do not develop their procedure 
for the detection of dust on the surface of a PVS. This investigation makes up for the deficiencies raised earlier. The 
second contribution of this work shows that the morphology of characteristic IV for a PV panel is the same as for a 
series panel configuration. 

Materials and Methods 
 
For data acquisition, the authors used 4 photovoltaic panels (PVP) ERDM 235TP / 6 in series configuration;  
Table 1 shows the characteristics of the PVP used. For data acquisition, a remote virtual instrument was used, consisting 
of a Solsensor and a PVA-1000S photovoltaic analyzer to obtain information on radiation intensity (RI) and characteristic 
IV, respectively.  
Table 2 and  
Table 3 show information for the Solsensor and the PV PVA-1000S, respectively. 

 

Table 1. ERDM 235TP / 6 specifications. 

Parameter Value 
Maximum power output 235 W 

Voltage Open Circuit (VOC) 36.57 V 
Short-circuit current (Icc) 8.69 A 

 

Table 2. SolSensor specifications. 

Parameter Value 
Irradiance accuracy ±2	% typical, 0 to 1500 𝑊/𝑚! 

Tilt accuracy. ±1 degree typical 0 - 90 degree 
Measurement interval Irradiance: 0.1 s 
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Table 3. PVA-1000S specifications. 

Parameter Value 
PV voltaje range 0 - 1000 𝑉 

Current range 0 - 20 𝐴 
Voltage accuracy ±0.5	%	 ± 0.5	𝑉  
Current accuracy ±0.5	%	 ± 40	𝑚𝐴 

Voltage resolution 25 𝑚𝑉 
Current resolution 500 𝜇𝐴 
I-V sweep duration 80-240 𝑚𝑠 

 
The IV curve of a PV module is morphologically the same as the IV curve of a PVS in series configuration. This indicates 
that the resulting characteristic IV and the point of maximum power are represented as the horizontal sum of the 
individual building blocks, being this the second contribution of our work. By means of this phenomenon, it is observed 
that the dust signal acquired by PVS presents non-stationary characteristics. Figure 1 and Figure 2 shows the electrical 
schematic for the serial topology, while Figure 3 shows the expected signal shape in characteristic IV. 

 

 
Figure 1. Electrical diagram of the serial configuration. 

 
Figure 2. Experimental installation. 

 
Figure 3. Expected signal serial configuration. 
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For feature extraction, the authors used equation (1) reported by (Trutié-Carrero et al., 2020). 
 

𝛼 = −
log! '

|𝑊𝑓(𝑘, 𝑗)|"#$
𝐴 1

𝑗
−
1
2
						∀		𝑘, 𝑗 ∈ 	ℤ% 

(1) 

 
where: 𝛼 is the Lipschitz exponent, |𝑊𝑓(𝑘, 𝑗)|"#$ is the Wavelet transform of maximum modulus according to (Griffel 
& Daubechies, 1995; Mallat, 2009), 𝑗 the jth decomposition level and 𝐴 is the Lipschitz constant of the analysis function. 

Results and Discussion 
 
To validate the detection process, the authors used 60 signals divided into two groups. The first group contains 30 
signals without fault presence while the second group presents 30 signals with fault presence Notice in Figure 4 how 
the voltage superposition is fulfilled, in addition to validating the second contribution of the work. On the other hand, 
Figure 5 shows the existing RI at the time of acquisition. 

 
Figure 4. Voltage superposition. 

 
Figure 5. RI existing in the acquisition process. 

The variation in Icc seen in Figure 4 is due to the measurement being made under field conditions. In addition, 
according to the report by (Mrabti et al., 2010; Perraki & Kounavis, 2016; Xiao et al., 2014) suggest that when 
the RI varies, the Icc does so abruptly. 
 
To carry out the feature extraction process, an important step is to choose the Lipschitz constant and to know 
what the decomposition level to work at for a given wavelet function. Figure 6 is a figure of merit that allows 
the selection of the values of A and j for the wavelet function Symlet 4. In this case the authors make a 
selection for A = 200 and j = 1. 
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Figure 6. Selection of A and j for the wavelet function Symlet 4. 

To automate the detection process, the authors calculated the threshold based on 60 historical data, 30 
without the presence of noise and the rest with the presence of signal with noise.  
Figure 7 shows in orange the histogram pertaining to the signals under the presence of dust on the surface of 
the PVS, in blue the histogram pertaining to the signals without fault presence and with dashed lines the 
threshold selected to automate fault detection. Note in this figure how there is only a small portion of signals 
without the presence of a fault in the zone where there is a fault. 

 
Figure 7. Signals histogram. 

Note in Figure 8 how none of the scattered data shown corresponding to signals with fault presence (orange color) are 
lower than the threshold (dashed line), showing that the proposed method presents a good behavior against the 
detection of dust showing only 2 false positives. 
 

 
Figure 8. Results obtained by algorithm. 
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Conclusions 
 
This paper presented a method based on Lipschitz exponent and a non-coherent detection approach to detect dust on 
the surface of a photovoltaic system with serial configuration. This method produced only 2 false positives in 30 signals. 
On the other hand, the morphological behavior of characteristic IV for one, two, three and four photovoltaic panels 
was evaluated by visual inspection. After completing this evaluation, it was confirmed that the morphology of 
characteristic IV of a photovoltaic panel is the same as that of characteristic IV of a photovoltaic system in series 
configuration. In the next studies, a fractal algorithm will be designed to feature extract and maximize accuracy in the 
morphological evaluation of the signal. In addition, work will be done on optimizing the decision procedure. 
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